Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 70(24): 4747-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23864031

RESUMEN

Mapping mammalian synaptic connectivity has long been an important goal of neuroscientists since it is considered crucial for explaining human perception and behavior. Yet, despite enormous efforts, the overwhelming complexity of the neural circuitry and the lack of appropriate techniques to unravel it have limited the success of efforts to map connectivity. However, recent technological advances designed to overcome the limitations of conventional methods for connectivity mapping may bring about a turning point. Here, we address the promises and pitfalls of these new mapping technologies.


Asunto(s)
Conectoma/métodos , Sinapsis/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Biología Computacional , Humanos , Mamíferos , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología
2.
Commun Biol ; 5(1): 838, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982261

RESUMEN

IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions. Here we employed a brain-blood barrier (BBB)-penetrant adeno-associated virus (AAV) known as PHP.eB to drive adult IRSp53 re-expression in IRSp53-mutant mice. The adult IRSp53 re-expression normalized social deficits without affecting hyperactivity or anxiety-like behavior. In addition, adult IRSp53 re-expression normalized NMDAR-mediated excitatory synaptic transmission in the medial prefrontal cortex. Our results suggest that adult IRSp53 re-expression can normalize synaptic and behavioral deficits in IRSp53-mutant mice and that BBB-penetrant adult gene re-expression has therapeutic potential.


Asunto(s)
N-Metilaspartato , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Conducta Social , Transmisión Sináptica
3.
Nat Commun ; 12(1): 2695, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976205

RESUMEN

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Asunto(s)
Encéfalo/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Células HEK293 , Humanos , Inmunosupresores/farmacología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Proteínas/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
4.
Front Mol Neurosci ; 12: 241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680851

RESUMEN

Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1 +/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1 +/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1 +/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1 +/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.

6.
Neuron ; 81(3): 629-40, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24412418

RESUMEN

The organization of synaptic connectivity within a neuronal circuit is a prime determinant of circuit function. We performed a comprehensive fine-scale circuit mapping of hippocampal regions (CA3-CA1) using the newly developed synapse labeling method, mGRASP. This mapping revealed spatially nonuniform and clustered synaptic connectivity patterns. Furthermore, synaptic clustering was enhanced between groups of neurons that shared a similar developmental/migration time window, suggesting a mechanism for establishing the spatial structure of synaptic connectivity. Such connectivity patterns are thought to effectively engage active dendritic processing and storage mechanisms, thereby potentially enhancing neuronal feature selectivity.


Asunto(s)
Dendritas/fisiología , Hipocampo/citología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Mapeo Encefálico , Análisis por Conglomerados , Dendritas/ultraestructura , Electroporación , Hipocampo/anatomía & histología , Imagenología Tridimensional , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Neurológicos , Neuronas/ultraestructura , Lectinas de Plantas/metabolismo , Estadística como Asunto , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA