Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Small ; 20(18): e2309469, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174621

RESUMEN

Property optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite. Notably, the composite thin-films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10-3 S cm-1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on-demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics.

2.
Soft Matter ; 20(9): 2040-2051, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38343290

RESUMEN

Toric focal conic domains (TFCDs) in smectic liquid crystals exhibit distinct topological characteristics, featuring torus-shaped molecular alignment patterns with rotational symmetry around a central core. TFCDs have attracted much interest due to their unique topological structures and properties, enabling not only fundamental studies but also potential applications in liquid crystal (LC)-based devices. Here, we investigated the precise spatial control of the arrangement of TFCDs using micropatterns and sublimation of TFCDs to estimate the energy states of the torus-like structures. Through simulations, we observed that the arrangement of TFCDs strongly depends on the shape of the topographies of underlying substrates. To accurately estimate the energetic effects of non-zero eccentricity and evaluate their thermodynamic stability, we propose a geometric model. Our findings provide valuable insights into the behavior of smectic LCs, offering opportunities for developing novel LC-based devices with precise control over their topological properties.

3.
Nano Lett ; 23(16): 7615-7622, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37527024

RESUMEN

Metal-organic frameworks (MOFs) represent crystalline materials constructed from combinations of metal and organic units to often yield anisotropic porous structures and physical properties. Postsynthetic methods to align the MOF crystals in bulk remain scarce yet tremendously important to fully utilize their structure-driven intrinsic properties. Herein, we present an unprecedented composite of liquid crystals (LCs) and MOFs and demonstrate the use of nematic LCs to dynamically control the orientation of MOF crystals with exceptional order parameters (as high as 0.965). Unique patterns formed through a facile multidirectional alignment of MOF crystals exhibit polarized fluorescence with the fluorescence intensity of a pattern dependent on the angle of a polarizer, offering potential use in various optical applications such as an optical security label. Further, the alignment mechanism indicates that the method is applicable to numerous combinations of MOFs and LCs, which include UV polymerizable LC monomers used to fabricate free-standing composite films.

4.
Nat Mater ; 21(3): 317-324, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241823

RESUMEN

The dielectric tensor is a physical descriptor of fundamental light-matter interactions, characterizing anisotropic materials with principal refractive indices and optic axes. Despite its importance in scientific and industrial applications ranging from material science to soft matter physics, the direct measurement of the three-dimensional dielectric tensor has been limited by the vectorial and inhomogeneous nature of light scattering from anisotropic materials. Here, we present a dielectric tensor tomographic approach to directly measure dielectric tensors of anisotropic structures including the spatial variations of principal refractive indices and directors. The anisotropic structure is illuminated with a polarized plane wave with various angles and polarization states. Then, the scattered fields are holographically measured and converted into vectorial diffracted field components. Finally, by inversely solving a vectorial wave equation, the three-dimensional dielectric tensor is reconstructed. Using this approach, we demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast three-dimensional non-equilibrium dynamics.


Asunto(s)
Cristales Líquidos , Refractometría , Anisotropía , Cristales Líquidos/química , Refractometría/métodos , Tomografía Computarizada por Rayos X
5.
Macromol Rapid Commun ; : e2300303, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37464964

RESUMEN

Orientation-controlled polymeric fiber is one of the most exciting research topics to rationalize the multifunctionality for various applications. In order to realize this goal, the growth of polymeric fibers should be controlled using various techniques like extrusion, molding, drawing, and self-assembly. Among the various candidates to fabricate the orientation-controlled polymeric fibers, the template-assisted assembly guided by a liquid crystal (LC) matrix is the most promising because the template can be manipulated easily with various methods like surface anchoring, rubbing, geometric confinement, and electric field. This review introduces the recent progress toward the directed growth of polymeric fibers using the LC template. Three representative LC-templated polymerization techniques to fabricate fibers include chemical or physical polymerization from the monomers mixed in LC matrix, patterned fibers formed from LC-templated reactive mesogens, and orientation-controlled nanofibers by infiltrating vaporized monomers between LC molecules. The orientation-controlled polymeric fibers will be used in electro-optical switching tools, tunable hydrophilic or hydrophobic surfaces, and control of phosphorescence, which can open a way to design, fabricate, and modulate nano- to micron-scale fibers with various functions on demand.

6.
Macromol Rapid Commun ; 44(3): e2200650, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36350231

RESUMEN

Shape memory polymers have great potential in the fields of soft robotics, injectable medical devices, and as essential materials for advanced electronic devices. Herein, light-triggered shape-memory thermoplastic polyurethane (TPU) is reported using azido TPU grafted by the photoswitchable azo compound. The trans-cis transitions of the azobenzene on the side chain of the TPU induce the recoiling of the main chain, leading to shaping memory behavior. Under UV irradiation, cis-azo allows the oriented main chain to recoil to release residual stress and realize light-triggered shape memory behavior. The facile method proposed here for the preparation of azo-functionalized TPU can provide viable opportunities for soft robotics and smart TPU applications.


Asunto(s)
Robótica , Materiales Inteligentes , Poliuretanos/química , Rayos Ultravioleta
7.
J Am Chem Soc ; 144(6): 2657-2666, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35112850

RESUMEN

Circularly polarized light (CPL) is an inherently chiral entity and is considered one of the possible deterministic signals that led to the evolution of homochirality. While accumulating examples indicate that chirality beyond the molecular level can be induced by CPL, not much is yet known about circumstances where the spin angular momentum of light competes with existing molecular chiral information during the chirality induction and amplification processes. Here we present a light-triggered supramolecular polymerization system where chiral information can both be transmitted and nonlinearly amplified in a "sergeants-and-soldiers" manner. While matching handedness with CPL resulted in further amplification, we determined that opposite handedness could override molecular information at the supramolecular level when the enantiomeric excess was low. The presence of a critical chiral bias suggests a bifurcation point in the homochirality evolution under random external chiral perturbation. Our results also highlight opportunities for the orthogonal control of supramolecular chirality decoupled from molecular chirality preexisting in the system.

8.
Langmuir ; 38(12): 3765-3774, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35302783

RESUMEN

We demonstrate a facile method to fabricate a recyclable cell-alignment scaffold using nanogrooves based on sublimable liquid crystal (LC) material. Randomly and uniaxially arranged smectic LC structures are obtained, followed by sublimation and recondensation processes, which directly produce periodic nanogrooves with dimensions of a couple of hundreds of nanometers. After treatment with osmium tetroxide (OsO4), the nanogroove can serve as a scaffold to efficiently induce directed cell growth without causing cytotoxicity, and it can be used repeatedly. Together, various cell types are applied to the nanogroove, proving the scaffold's broad applicability. Depending on the nanotopography of the LC structures, cells exhibit different morphologies and gene expression patterns, compared to cells on standard glass substrates, according to microscopic observation and qPCR. Furthermore, cell sheets can be formed, which consist of oriented cells that can be repeatedly formed and transferred to other substrates, while maintaining its organization. We believe that our cell-aligning scaffold may pave the way for the soft material field to bioengineering, which can involve fundamentals in cell behavior and function, as well as applications for regenerative medicine.


Asunto(s)
Cristales Líquidos , Nanoestructuras , Cristales Líquidos/química , Nanoestructuras/toxicidad , Tetróxido de Osmio
9.
Soft Matter ; 18(21): 4067-4076, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583081

RESUMEN

In droplet evaporation, the onset of evaporative crystallization near a contact line is inevitable if there is a coffee-ring effect increasing the local concentration of suspended particles at the edge. In this study, we present a novel idea to control the nucleation location of surfactant crystallization by using the vapor-driven solutal Marangoni effects of a binary mixture drop in a confined chamber. Here, the evaporated volatile vapors near the droplet surface can change the local surface tension and generate a radially inward flow that suppresses the conventional coffee-ring flow (i.e., evaporatively-driven capillary flow). Using this method, we could accumulate suspended particles in the middle of the droplet. In consequence, we succeed in adjusting the nucleation location from the droplet edge to the center provided that a gel-transition process is neglected, where the crystallized material has a relatively long chain length. Here, we tested different hydrocarbon chain lengths of the surfactants (i.e., CTAB > TTAB > DTAB). We expect that the proposed idea can offer great potential for controlling the nucleation in the evaporative crystallization and its final crystalline solid morphology.

10.
Angew Chem Int Ed Engl ; 61(43): e202211465, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36045485

RESUMEN

Creation of new two-dimensional (2D) architectures has attracted significant attention in the field of self-assembly for structural diversity and new functionalization. Although numerous 2D polymer nanosheets have been reported, 2D nanosheets with tubular channels have been unexplored. Herein, we describe a new strategy for the fabrication of stimulus-responsive conjugated polymer 2D nanosheets with hollow cavities. Amphiphilic macrocyclic diacetylenes self-assembled in an aqueous solution in a columnar manner to afford bilayered 2D nanosheets with intrinsically tubular nanochannels. UV-induced polymerization resulted in the generation of blue-colored tubular conjugated polydiacetylene 2D nanosheets. Immobilization of gold nanoparticles, fluorescence labeling with FRET phenomenon and colorimetric DNA sensing were demonstrated with these new 2D nanosheets. In addition, the free NH2 containing polymerized 2D nanosheet was utilized for conductivity behavior and grafting on graphene oxide (GO).


Asunto(s)
Nanopartículas del Metal , Polímeros de Estímulo Receptivo , Oro , Polímeros/química , Colorimetría
11.
Small ; 17(26): e2008097, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34081393

RESUMEN

Biomacromolecules are likely to undergo self-assembly and show specific collective behavior concentrated in the medium. Although the assembly procedures have been studied for unraveling their mysteries, there are few cases to directly demonstrate the collective behavior and phase transition process in dynamic systems. In the contribution, the drying process of M13 droplet is investigated, and can be successfully simulated by a doctor blade coating method. The morphologies in the deposited film are measured by atomic force microscopy and the liquid crystal phase development is captured in real time using polarized optical microscope. Collective behaviors near the contact line are characterized by the shape of meniscus curve and particle movement velocity. With considering rheological properties and flow, the resultant chiral film is used to align gold nanorods, and this approach can suggest a way to use M13 bacteriophage as a scaffold for the multi-functional chiral structures.


Asunto(s)
Cristales Líquidos , Nanotubos , Bacteriófago M13 , Oro , Microscopía de Fuerza Atómica
12.
Chemistry ; 27(24): 7108-7113, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33464673

RESUMEN

Herein, it is reported that the polymorphism in the helical nanofilament (HNF, B4 ) liquid-crystalline phase depends on the fabrication methods, that is, UV-driven formation and template-assisted self-assembly in the nanoconfined geometry. As a result, uniaxially oriented HNFs with different helical structures were obtained, in which generation of the twisted-ribbon and cylindrical-ribbon polymorphs showed that even the molecular lattice has a different orientation. The detailed structures were directly observed by SEM and grazing-incidence X-ray diffraction with synchrotron radiation. The resultant polymorphs could be used in chiro-optical applications due to the capability for fine control of the helical structures.

13.
Small ; 16(34): e2002449, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32686286

RESUMEN

2D DNA microstructures are fabricated by applying the shear force to the DNA solution on the microchannels. The "U"-like textures of DNA are clearly observed when the mechanical shearing is applied on the aqueous DNA sample under the topographic confinement, in which the shearing direction is perpendicular to the grooves. The optical textures of U-like microstructures are directly observed by polarized optical microscopy (POM) and laser scanning fluorescent confocal polarizing microscopy (FCPM). The DNA microstructures can be modified by varying the width, showing the multiple U-patterns along with channel direction due to the synergistic interaction between the elastic behavior of DNA chains and topographic boundary condition. The resultant microstructures can be used to align rod-like liquid crystals (LCs) to generate alternatively oriented nematic phase and tilted focal conic domains (FCDs) in the smectic A phase. It is believed that this approach can suggest a hint to use to DNA materials for organizing multiscale hierarchical structures of soft- and biomaterials.


Asunto(s)
Cristales Líquidos , Materiales Biocompatibles , ADN
14.
Small ; 15(49): e1903818, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31602793

RESUMEN

A structurally reversible smectic liquid crystal (LC) emulsion made of semifluorinated rod-type molecules in silicon oil, which is controlled by simple heating and cooling, is presented. Without adding any kind of additives, such as surfactants, polymers or emulsifiers, and without using any special tools, such as microfluidics or gas bubbling, the LC molecules spontaneously form monodisperse spherical and myelin-like structures upon cooling from the isotropic temperature. The LC emulsion can easily trap guest materials, providing a platform for repeatable and reliable switchable emulsification. For example, this interesting system enables the realization of an on-off lasing system by confining fluorescent dyes in the LC droplets.

15.
Chemistry ; 25(31): 7438-7442, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-30957281

RESUMEN

The helical nanofilament (HNF) and low-temperature dark conglomerate (DC) liquid-crystal (LC) phases of bent-core molecules show the same local layer structure but present different bulk morphologies. The DC phase is characterized by the formation of nanoscale toric focal conics, whereas the HNF phase is constructed of bundles of twisted layers. Although the local layer structure is similar in both phases, materials that form these phases tend to form one morphology in preference to the other. Targeted control of the nanostructures would provide pathways to potential applications and insight into how conditions drive a specific phase formation. Here, W624, a compound known to form the DC phase is confined in nanometer scale channels of porous anodized aluminum oxide (AAO) membranes. Within each nanochannel, the DC phase is suppressed forming the HNF structure instead, indicating the nanoscale spatial limitation can control the phase structure of the DC phase.

16.
Chemphyschem ; 20(6): 890-897, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30730103

RESUMEN

Ambipolar organic semiconductors are considered promising for organic electronics because of their interesting electric properties. Many hurdles remain yet to be overcome before they can be used for practical applications, especially because their orientation is hard to control. We demonstrate a method to control the orientation of columnar structures based on a hydrogen (H)-bonded donor-acceptor complex between a star-shaped tris(triazolyl)triazine and triphenylene-containing benzoic acid, using physicochemical nanoconfinement. The molecular configuration and supramolecular columnar assemblies in a one-dimensional porous anodic aluminium oxide (AAO) film were dramatically modulated by controlling the pore-size and by chemical modification of the inner surface of the porous AAO film. In situ experiments using grazing-incidence X-ray diffraction (GIXRD) were carried out to investigate the structural evolution produced at the nanometer scale by varying physicochemical conditions. The resulting highly ordered nanostructures may open a new pathway to effectively control the alignment of liquid crystal ambipolar semiconductors.

17.
Soft Matter ; 15(29): 5835-5841, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31169280

RESUMEN

We study transformations of self-organised defect arrays at the nematic-smectic A liquid crystal phase transition, and show that these defect configurations are correlated, or "remembered", across the phase transition. A thin film of thermotropic liquid crystal is subjected to hybrid anchoring by an air interface and a water substrate, and viewed under polarised optical microscopy. Upon heating from smectic-A to nematic, a packing of focal conic domains melts into a dense array of boojums-nematic surface defects-which then coarsens by pair-annihilation. With the aid of Landau-de Gennes numerical modeling, we elucidate the topological and geometrical rules underlying this transformation. In the transition from nematic to smectic-A, we show that focal conic domain packings are organised over large scales in patterns that retain a geometric memory of the nematic boojum configuration, which can be recovered with remarkable fidelity.

18.
Nanotechnology ; 30(24): 245704, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30812021

RESUMEN

Thin films made of deoxyribonucleic acid (DNA), dissolved in an aqueous solution, and cetyltrimethyl-ammonium-modified DNA (CDNA), dissolved in an organic solvent, utilising multiwall carbon nanotubes (MWCNTs) are not yet well-understood for use in optoelectronic device and sensor applications. In this study, we fabricate MWCNT-integrated DNA and CDNA thin films using the drop-casting method. We also characterise the optical properties (i.e. absorption spectra, Fourier-transform infrared spectra, Raman spectra, photoluminescence, and time-of-flight secondary ion mass spectrometry) to study spectral absorption, interaction, functional group, chirality, and compositional moiety and its distribution of MWCNTs in DNA and CDNA thin films. The electrical property for conductance and the mechanical characterisations of hardness, modulus and elasticity for stability are also discussed. Lastly, to show the feasibility of directional alignment of MWCNTs in DNA thin films, we perform an alignment experiment with MWCNTs in DNA via brushing and shearing methods, and we evaluate the results using polarised optical microscopy. Our simple methodology to align ingredients in DNA and CDNA thin films leveraging various optical, electrical and mechanical properties, provides great potential for the development of efficient devices and sensors.


Asunto(s)
Cetrimonio/química , ADN/química , Nanotubos de Carbono/química , Fenómenos Electromagnéticos , Fenómenos Mecánicos , Análisis Espectral
19.
Langmuir ; 34(7): 2551-2556, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29368930

RESUMEN

One of the alluring aspects of liquid crystals (LCs) is their readily controllable self-assembly behavior, leading to comprehension of complex topological structures and practical patterning applications. Here, we report on manipulating various kinds of topological defects by adopting an imprinted polymer-based soft microchannel that simultaneously imposes adjustable surface anchoring, confinement, and uniaxial alignment. Distinctive molecular orientation could be achieved by varying the surface anchoring conditions at the sidewall polymer and the rubbing directions on the bottom layer. On this pioneering platform, a common LC material, 8CB (4'-n-octyl-4-cyano-biphenyl), was placed where various topological defect domains were generated in a periodic arrangement. The experimental results showed that our platform can change the packing behavior and even the shape of topological defects by varying the rubbing condition. We believe that this facile tool to modulate surface boundary conditions combined with topographic confinement can open a way to use LC materials in potential optical and patterning applications.

20.
Opt Express ; 25(13): 14043-14048, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28788989

RESUMEN

We demonstrate a biocompatible optofluidic laser with an edible liquid laser gain medium, made of riboflavin dissolved in water. The proposed laser platform is based on a pulled-glass-capillary optofluidic ring resonator (OFRR) with a high Q-factor, resulting in a lasing threshold comparable to that of conventional organic dye lasers that are mostly harmful, despite the relatively low quantum yield of the riboflavin. The proposed biocompatible laser can be realized by not only a capillary OFRR, but also by an optical-fiber-based OFRR that offers improved mechanical stability, and is promising technology for application to in vivo bio-sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA