Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 134: 4-13, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35339358

RESUMEN

Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.


Asunto(s)
Extremófilos , Rhodophyta , Humanos , Eucariontes , Extremófilos/genética , Rhodophyta/genética , Genoma , Suelo , Filogenia
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38267085

RESUMEN

Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.


Asunto(s)
Arabidopsis , Rhodophyta , Algas Marinas , Algas Marinas/genética , Criptocromos/metabolismo , Rhodophyta/genética , Ritmo Circadiano/genética , Arabidopsis/genética
3.
J Phycol ; 60(3): 778-779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587012

RESUMEN

A reclassification of Cyanidium chilense under the new genus Cavernulicola was recently proposed together with a new family (Cavernulicolaceae) and a new order (Cavernulicolales). Unfortunately, due to an error in the required citation of the basionym, the name "Cavernulicola chilensis" was invalid and cannot be accepted as the generitype of Cavernulicola. This means that Cavernulicola, Cavernulicolaceae, and Cavernulicolales are likewise invalid names under the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN, Shenzhen Code). In this contribution, each of these names is validated.


Asunto(s)
Rhodophyta , Terminología como Asunto , Rhodophyta/clasificación , Rhodophyta/genética
4.
J Phycol ; 59(2): 293-300, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764681

RESUMEN

Model organism research has provided invaluable knowledge about foundational biological principles. However, most of these studies have focused on species that are in high abundance, easy to cultivate in the lab, and represent only a small fraction of extant biodiversity. Here, we present three examples of rare algae with unusual features that we refer to as "algae obscura." The Cyanidiophyceae (Rhodophyta), Glaucophyta, and Paulinella (rhizarian) lineages have all transitioned out of obscurity to become models for fundamental evolutionary research. Insights have been gained into the prevalence and importance of eukaryotic horizontal gene transfer, early Earth microbial community dynamics, primary plastid endosymbiosis, and the origin of Archaeplastida. By reviewing the research that has come from the exploration of these organisms, we demonstrate that underappreciated algae have the potential to help us formulate, refine, and substantiate core hypotheses and that such organisms should be considered when establishing future model systems.


Asunto(s)
Evolución Biológica , Rhodophyta , Filogenia , Plantas , Eucariontes/genética , Rhodophyta/genética , Plastidios/genética , Simbiosis/genética
5.
J Phycol ; 59(3): 444-466, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36792488

RESUMEN

The Cyanidiophyceae, an extremophilic red algal class, is distributed worldwide in extreme environments. Species grow either in acidic hot environments or in dim light conditions (e.g., "cave Cyanidium"). The taxonomy and classification systems are currently based on morphological, eco-physiological, and molecular phylogenetic characters; however, previous phylogenetic results showed hidden diversity of the Cyanidiophyceae and suggested a revision of the classification system. To clarify phylogenetic relationships within this red algal class, we employ a phylogenomic approach based on 15 plastomes (10 new) and 15 mitogenomes (seven new). Our phylogenies show consistent relationships among four lineages (Galdieria, "cave Cyanidium", Cyanidium, and Cyanidioschyzon lineages). Each lineage is distinguished by organellar genome characteristics. The "cave Cyanidium" lineage is a distinct clade that diverged after the Galdieria clade but within a larger monophyletic clade that included the Cyanidium and Cyanidioschyzon lineages. Because the "cave Cyanidium" lineage is a mesophilic lineage that differs substantially from the other three thermoacidophilic lineages, we describe it as a new order (Cavernulicolales). Based on this evidence, we reclassified the Cyanidiophyceae into four orders: Cyanidiales, Cyanidioschyzonales, Cavernulicolales ord. nov., and Galdieriales ord. nov. The genetic distance among these four orders is comparable to, or greater than, the distances found between other red algal orders and subclasses. Three new genera (Cavernulicola, Gronococcus, Sciadococcus), five new species (Galdieria javensis, Galdieria phlegrea, Galdieria yellowstonensis, Gronococcus sybilensis, Sciadococcus taiwanensis), and a new nomenclatural combination (Cavernulicola chilensis) are proposed.


Asunto(s)
Extremófilos , Genoma de Plastidios , Rhodophyta , Filogenia , Rhodophyta/genética
6.
BMC Biol ; 20(1): 2, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996446

RESUMEN

BACKGROUND: Group II introns are mobile genetic elements that can insert at specific target sequences, however, their origins are often challenging to reconstruct because of rapid sequence decay following invasion and spread into different sites. To advance understanding of group II intron spread, we studied the intron-rich mitochondrial genome (mitogenome) in the unicellular red alga, Porphyridium. RESULTS: Analysis of mitogenomes in three closely related species in this genus revealed they were 3-6-fold larger in size (56-132 kbp) than in other red algae, that have genomes of size 21-43 kbp. This discrepancy is explained by two factors, group II intron invasion and expansion of repeated sequences in large intergenic regions. Phylogenetic analysis demonstrates that many mitogenome group II intron families are specific to Porphyridium, whereas others are closely related to sequences in fungi and in the red alga-derived plastids of stramenopiles. Network analysis of intron-encoded proteins (IEPs) shows a clear link between plastid and mitochondrial IEPs in distantly related species, with both groups associated with prokaryotic sequences. CONCLUSION: Our analysis of group II introns in Porphyridium mitogenomes demonstrates the dynamic nature of group II intron evolution, strongly supports the lateral movement of group II introns among diverse eukaryotes, and reveals their ability to proliferate, once integrated in mitochondrial DNA.


Asunto(s)
Genoma Mitocondrial , Rhodophyta , Evolución Molecular , Humanos , Intrones/genética , Filogenia , Plastidios/genética , Rhodophyta/genética
7.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982334

RESUMEN

Cosmopolitan species are rare in red algae, which have a low-dispersal capacity unless they are dispersed by human-mediated introductions. Gelidium crinale, a turf-forming red alga, has a widespread distribution in tropical and temperate waters. To decipher the genetic diversity and phylogeography of G. crinale, we analyzed mitochondrial COI-5P and plastid rbcL sequences from collections in the Atlantic, Indian, and Pacific Oceans. Phylogenies of both markers statistically supported the monophyly of G. crinale, with a close relationship to G. americanum and G. calidum from the Western Atlantic. Based on the molecular analysis from these materials, Pterocladia heteroplatos from India is here merged with G. crinale. Phylogeny and TCS networks of COI-5P haplotypes revealed a geographic structure of five groups: (i) Atlantic-Mediterranean, (ii) Ionian, (iii) Asian, (iv) Adriatic-Ionian, and (v) Australasia-India-Tanzania-Easter Island. The most common ancestor of G. crinale likely diverged during the Pleistocene. The Bayesian Skyline Plots suggested the pre-LGM population expansion. Based on geographical structure, lineage-specific private haplotypes, the absence of shared haplotypes between lineages, and AMOVA, we propose that the cosmopolitan distribution of G. crinale has been shaped by Pleistocene relicts. The survival of the turf species under environmental stresses is briefly discussed.


Asunto(s)
Rhodophyta , Humanos , Filogeografía , Teorema de Bayes , Filogenia , Rhodophyta/genética , Haplotipos/genética , Variación Genética , ADN Mitocondrial/genética
8.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445662

RESUMEN

Coccolithophores are well-known haptophytes that produce small calcium carbonate coccoliths, which in turn contribute to carbon sequestration in the marine environment. Despite their important ecological role, only two of eleven haptophyte plastid genomes are from coccolithophores, and those two belong to the order Isochrysidales. Here, we report the plastid genomes of two strains of Ochrosphaera neapolitana (Coccolithales) from Spain (CCAC 3688 B) and the USA (A15,280). The newly constructed plastid genomes are the largest in size (116,906 bp and 113,686 bp, respectively) among all the available haptophyte plastid genomes, primarily due to the increased intergenic regions. These two plastid genomes possess a conventional quadripartite structure with a long single copy and short single copy separated by two inverted ribosomal repeats. These two plastid genomes share 110 core genes, six rRNAs, and 29 tRNAs, but CCAC 3688 B has an additional CDS (ycf55) and one tRNA (trnL-UAG). Two large insertions at the intergenic regions (2 kb insertion between ycf35 and ycf45; 0.5 kb insertion in the middle of trnM and trnY) were detected in the strain CCAC 3688 B. We found the genes of light-independent protochlorophyllide oxidoreductase (chlB, chlN, and chlL), which convert protochlorophyllide to chlorophyllide during chlorophyll biosynthesis, in the plastid genomes of O. neapolitana as well as in other benthic Isochrysidales and Coccolithales species, putatively suggesting an evolutionary adaptation to benthic habitats.


Asunto(s)
Genoma de Plastidios , Haptophyta , Haptophyta/genética , Protoclorofilida , Plastidios/genética , Evolución Molecular , Filogenia
9.
Mol Biol Evol ; 38(2): 344-357, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32790833

RESUMEN

Eukaryotic photosynthetic organelles, plastids, are the powerhouses of many aquatic and terrestrial ecosystems. The canonical plastid in algae and plants originated >1 Ga and therefore offers limited insights into the initial stages of organelle evolution. To address this issue, we focus here on the photosynthetic amoeba Paulinella micropora strain KR01 (hereafter, KR01) that underwent a more recent (∼124 Ma) primary endosymbiosis, resulting in a photosynthetic organelle termed the chromatophore. Analysis of genomic and transcriptomic data resulted in a high-quality draft assembly of size 707 Mb and 32,361 predicted gene models. A total of 291 chromatophore-targeted proteins were predicted in silico, 208 of which comprise the ancestral organelle proteome in photosynthetic Paulinella species with functions, among others, in nucleotide metabolism and oxidative stress response. Gene coexpression analysis identified networks containing known high light stress response genes as well as a variety of genes of unknown function ("dark" genes). We characterized diurnally rhythmic genes in this species and found that over 49% are dark. It was recently hypothesized that large double-stranded DNA viruses may have driven gene transfer to the nucleus in Paulinella and facilitated endosymbiosis. Our analyses do not support this idea, but rather suggest that these viruses in the KR01 and closely related P. micropora MYN1 genomes resulted from a more recent invasion.


Asunto(s)
Amoeba/genética , Cromatóforos , Genoma de Plastidios , Genoma de Protozoos , Simbiosis , Amoeba/metabolismo , Amoeba/virología , Transcriptoma
10.
Physiol Plant ; 172(3): 1422-1438, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31828796

RESUMEN

ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oomicetos , Transportador de Casetes de Unión a ATP, Subfamilia G , Análisis por Conglomerados , Interacciones Huésped-Patógeno , Filogenia , Enfermedades de las Plantas/genética
11.
BMC Evol Biol ; 20(1): 132, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028200

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

12.
BMC Evol Biol ; 20(1): 112, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892741

RESUMEN

BACKGROUND: The Cyanidiophyceae is an early-diverged red algal class that thrives in extreme conditions around acidic hot springs. Although this lineage has been highlighted as a model for understanding the biology of extremophilic eukaryotes, little is known about the molecular evolution of their mitochondrial genomes (mitogenomes). RESULTS: To fill this knowledge gap, we sequenced five mitogenomes from representative clades of Cyanidiophyceae and identified two major groups, here referred to as Galdieria-type (G-type) and Cyanidium-type (C-type). G-type mitogenomes exhibit the following three features: (i) reduction in genome size and gene inventory, (ii) evolution of unique protein properties including charge, hydropathy, stability, amino acid composition, and protein size, and (iii) distinctive GC-content and skewness of nucleotides. Based on GC-skew-associated characteristics, we postulate that unidirectional DNA replication may have resulted in the rapid evolution of G-type mitogenomes. CONCLUSIONS: The high divergence of G-type mitogenomes was likely driven by natural selection in the multiple extreme environments that Galdieria species inhabit combined with their highly flexible heterotrophic metabolism. We speculate that the interplay between mitogenome divergence and adaptation may help explain the dominance of Galdieria species in diverse extreme habitats.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Rhodophyta , Ácidos , Composición de Base , Extremófilos/genética , Manantiales de Aguas Termales , Filogenia , Rhodophyta/genética
13.
J Phycol ; 56(6): 1428-1442, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33460076

RESUMEN

The taxonomic placement of strains belonging to the extremophilic red alga Galdieria maxima has been controversial due to the inconsistent phylogenetic position inferred from molecular phylogenetic analyses. Galdieria maxima nom. inval. was classified in this genus based on morphology and molecular data in the early work, but some subsequent molecular phylogenetic analyses have inferred strains of G. maxima to be closely related to the genus Cyanidioschyzon. To address this controversy, an isolated strain identified as G. maxima using the rbcL gene sequence as the genetic barcode was examined using a comprehensive analysis across morphological, physiological, and genomic traits. Herein are reported the chloroplast-, mitochondrion-, and chromosome-level nuclear genome assemblies. Comparative analysis of orthologous gene clusters and genome arrangements suggested that the genome structure of this strain was more similar to that of the generitype of Cyanidioschyzon, C. merolae than to the generitype of Galdieria, G. sulphuraria. While the ability to uptake various forms of organic carbon for growth is an important physiological trait of Galdieria, this strain was identified as an ecologically obligate photoautotroph (i.e., the inability to utilize the natural concentrations of organic carbons) and lacked various gene models predicted as sugar transporters. Based on the genomic, morphological, and physiological traits, we propose this strain to be a new genus and species, Cyanidiococcus yangmingshanensis. Re-evaluation of the 18S rRNA and rbcL gene sequences of the authentic strain of G. maxima, IPPAS-P507, with those of C. yangmingshanensis suggests that the rbcL sequences of "G. maxima" deposited in GenBank correspond to misidentified isolates.


Asunto(s)
Extremófilos , Rhodophyta , Genoma , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 18S , Rhodophyta/genética , Análisis de Secuencia de ADN
14.
J Phycol ; 56(2): 358-379, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31762049

RESUMEN

We examined 12 strains representing eight species classified in the algal class Phaeothamniophyceae (Heterokontophyta). Based upon a five-gene molecular phylogeny (nuclear-encoded SSU rRNA and plastid-encoded psaA, psbA, psbC, and rbcL) and light microscopic observations, we describe five new species: Phaeoschizochlamys santosii sp. nov., Phaeoschizochlamys siveri sp. nov., Phaeothamnion wetherbeei sp. nov., Stichogloea dopii sp. nov. and Stichogloea fawleyi sp. nov. The Phaeothamniophyceae, as delimited here, form a natural group that is sister to the Aurearenophyceae. Molecular phylogenetic analyses proved more reliable than morphological characters for distinguishing species. Evolutionary trends with the SI clade of the heterokont algae are discussed.


Asunto(s)
Plastidios , Estramenopilos , Núcleo Celular , Filogenia , ARN Ribosómico , Análisis de Secuencia de ADN , Estramenopilos/genética
15.
Plant J ; 94(1): 91-104, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385296

RESUMEN

In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Plantas/metabolismo , Alelos , Chlamydomonas reinhardtii/genética , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Silenciamiento del Gen , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo
16.
BMC Evol Biol ; 19(1): 20, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634905

RESUMEN

BACKGROUND: The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS: Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS: Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.


Asunto(s)
Variación Genética , Genoma de Plastidios , Genómica , Secuencias Invertidas Repetidas/genética , Estramenopilos/genética , Secuencia de Bases , ADN Circular/genética , Evolución Molecular , Dosificación de Gen , Conformación de Ácido Nucleico , Filogenia , ARN de Transferencia/química , ARN de Transferencia/genética
17.
BMC Genomics ; 20(1): 850, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722669

RESUMEN

BACKGROUND: The MinION Access Program (MAP, 2014-2016) allowed selected users to test the prospects of long nanopore reads for diverse organisms and applications through the rapid development of improving chemistries. In 2014, faced with a fragmented Illumina assembly for the chloroplast genome of the green algal holobiont Caulerpa ashmeadii, we applied to the MAP to test the prospects of nanopore reads to investigate such intricacies, as well as further explore the hologenome of this species with native and hybrid approaches. RESULTS: The chloroplast genome could only be resolved as a circular molecule in nanopore assemblies, which also revealed structural variants (i.e. chloroplast polymorphism or heteroplasmy). Signal and Illumina polishing of nanopore-assembled organelle genomes (chloroplast and mitochondrion) reflected the importance of coverage on final quality and current limitations. In hybrid assembly, our modest nanopore data sets showed encouraging results to improve assembly length, contiguity, repeat content, and binning of the larger nuclear and bacterial genomes. Profiling of the holobiont with nanopore or Illumina data unveiled a dominant Rhodospirillaceae (Alphaproteobacteria) species among six putative endosymbionts. While very fragmented, the cumulative hybrid assembly length of C. ashmeadii's nuclear genome reached 24.4 Mbp, including 2.1 Mbp in repeat, ranging closely with GenomeScope's estimate (> 26.3 Mbp, including 4.8 Mbp in repeat). CONCLUSION: Our findings relying on a very modest number of nanopore R9 reads as compared to current output with newer chemistries demonstrate the promising prospects of the technology for the assembly and profiling of an algal hologenome and resolution of structural variation. The discovery of polymorphic 'chlorotypes' in C. ashmeadii, most likely mediated by homing endonucleases and/or retrohoming by reverse transcriptases, represents the first report of chloroplast heteroplasmy in the siphonous green algae. Improving contiguity of C. ashmeadii's nuclear and bacterial genomes will require deeper nanopore sequencing to greatly increase the coverage of these larger genomic compartments.


Asunto(s)
Caulerpa/genética , Genoma del Cloroplasto , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Genoma Bacteriano , Genoma Mitocondrial , Genómica/métodos , Polimorfismo Genético , Polimorfismo de Nucleótido Simple
18.
Mol Biol Evol ; 35(11): 2702-2711, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184126

RESUMEN

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


Asunto(s)
Adaptación Biológica , Chlorophyta/genética , Transferencia de Gen Horizontal , Microalgas/genética , Chlorophyta/metabolismo , Ambiente , Variación Genética , Genoma del Cloroplasto , Genómica , Microalgas/metabolismo , Filogenia , Estrés Salino , Sintenía , Transcriptoma
19.
Mol Biol Evol ; 35(8): 1869-1886, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688518

RESUMEN

Red algae (Rhodophyta) underwent two phases of large-scale genome reduction during their early evolution. The red seaweeds did not attain genome sizes or gene inventories typical of other multicellular eukaryotes. We generated a high-quality 92.1 Mb draft genome assembly from the red seaweed Gracilariopsis chorda, including methylation and small (s)RNA data. We analyzed these and other Archaeplastida genomes to address three questions: 1) What is the role of repeats and transposable elements (TEs) in explaining Rhodophyta genome size variation, 2) what is the history of genome duplication and gene family expansion/reduction in these taxa, and 3) is there evidence for TE suppression in red algae? We find that the number of predicted genes in red algae is relatively small (4,803-13,125 genes), particularly when compared with land plants, with no evidence of polyploidization. Genome size variation is primarily explained by TE expansion with the red seaweeds having the largest genomes. Long terminal repeat elements and DNA repeats are the major contributors to genome size growth. About 8.3% of the G. chorda genome undergoes cytosine methylation among gene bodies, promoters, and TEs, and 71.5% of TEs contain methylated-DNA with 57% of these regions associated with sRNAs. These latter results suggest a role for TE-associated sRNAs in RNA-dependent DNA methylation to facilitate silencing. We postulate that the evolution of genome size in red algae is the result of the combined action of TE spread and the concomitant emergence of its epigenetic suppression, together with other important factors such as changes in population size.


Asunto(s)
Evolución Biológica , Elementos Transponibles de ADN , Tamaño del Genoma , Rhodophyta/genética , Metilación de ADN , Epigénesis Genética , Duplicación de Gen , Regulación de la Expresión Génica
20.
Int J Syst Evol Microbiol ; 69(7): 1967-1973, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31046898

RESUMEN

A Gram-stain-negative, strictly aerobic bacterium, designated StC1T, was isolated from a marine alga, Stylonema cornu-cervi, in the Republic of Korea. Cells were oxidase- and catalase-positive rods that were motile by a single lateral flagellum. Growth of strain StC1T was observed at 30-45 °C(optimum, 37 °C), pH 6.0-11.0 (pH 7.0) and in the presence of 1.0-8.0 % (w/v) NaCl (2 %). Strain StC1T contained summed feature 8 (comprising C18 : 1ω7c/C18 : 1 ω6c) and 11-methyl-C18 : 1ω7c as the major fatty acids. Sulfoquinovosyl diacylglycerol, phosphatidylethanolamine and phosphatidylglycerol and ubiquinone-10 were identified as the major polar lipids and the sole isoprenoid quinone, respectively. The G+C content of the genomic DNA was 64.7 mol%. Strain StC1T was most closely related to Oricola cellulosilytica CC-AMH-OT, Nitratireductor basaltis J3T, Aquamicrobiumahrensii 905/1T and Mesorhizobium tamadayense Ala-3T with 97.3 , 96.9 , 96.8  and 96.6 % 16S rRNA gene sequence similarities, respectively, but it formed a distinct phylogenic lineage within the family Phyllobacteriaceae. On the basis of phenotypic, chemotaxonomic and molecular properties, strain StC1T represents a novel genus of the family Phyllobacteriaceae, for which the name Oceaniradius stylonematis gen. nov., sp. nov. is proposed. The type strain is StC1T (=KACC 19231T=JCM 32050T).


Asunto(s)
Phyllobacteriaceae/clasificación , Filogenia , Rhodophyta/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Phyllobacteriaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA