Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 20966, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711918

RESUMEN

We investigated the seismological structure beneath the equatorial Melanesian region, where is tectonically unique because an immense oceanic plateau, a volcanic chain and subduction zones meet. We conducted a multi-frequency P-wave tomography using data collected from an approximately 2-year-long seismic experiment around the Ontong Java Plateau (OJP). High-velocity anomalies were revealed beneath the center of the OJP at a depth of ~ 150 km, the middle-eastern edge of the OJP at depths of 200-300 km, and in the mantle transition zone beneath and around the OJP; low-velocity anomalies were observed along the Caroline volcanic island chain above 450 km depth. These anomalies are considered to be associated with the thick lithosphere of the OJP, remnant dipping Pacific slab, stagnant Pacific slab, and a sheet-like upwelling. The broad stagnant slab was formed due to rapid trench retreat from 48 to 25 Ma until when the OJP with thick lithosphere collided with a subduction boundary of the Pacific and Australian plates. This collision triggered slab breakoff beneath the arc where the dipping slab remained. The stagnant Pacific slab in the mantle transition zone restricted the plume upwelling from the lower mantle causing sheet-like deformed upwelling in the upper mantle.

2.
Science ; 324(5931): 1173-5, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19478177

RESUMEN

Subducted slabs of oceanic lithosphere below the western Pacific tend to be stagnant in the transition zone with poorly known mechanical properties. Typical examples are the Izu-Bonin and Japan slabs that meet each other to form a cusplike junction beneath southwest Japan. Here, we show that these two slabs are torn apart at their junction when they bend to flatten over the 660-kilometer discontinuity, as is expected from a simple geometric argument. We present three lines of evidence for this ongoing slab tear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA