RESUMEN
BACKGROUND: Neuroticism is a core personality trait and a major risk factor for several mental and physical diseases, particularly in females, who score higher on neuroticism than men, on average. However, a better understanding of the expression profiles of proteins in the circulating blood of different neurotic female populations may help elucidate the intrinsic mechanism of neurotic personality and aid prevention strategies on mental and physical diseases associated with neuroticism. METHODS: In our study, female subjects were screened for inclusion by the Eysenck Personality Questionnaire (EPQ), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI) scales and routine physical examination. Subjects who passed the examination and volunteered to participate were grouped by neuroticism using EPQ scores (0 and 1 = low neuroticism group; > 5 = high neuroticism group). Proteins in serum samples of the two neuroticism groups were identified using isobaric tags for relative and absolute quantification (iTRAQ) technology. RESULTS: A total of 410 proteins exhibited significant differences between high and low neuroticism, 236 proteins were significantly upregulated and 174 proteins were significantly downregulated. Combine the results of GO and KEGG enrichment analysis of differences proteins between high and low neuroticism with the PPI network, it could be observed that the Alpha-synuclein (SNCA), ATP7A protein (ATP7A), Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 (GNG2), cyclin-dependent kinase 6 (CDK6), myeloperoxidase (MPO), azurocidin (AZU1), Histone H2B type 1-H (HIST1H2BH), Integrin alpha-M (ITGAM) and Matrix metalloproteinase-9 (MMP9) might participate in the intrinsic mechanism of neuroticism by regulating response to catecholamine stimulus, catecholamine metabolic process, limbic system development and transcriptional misregulation in cancer pathway. CONCLUSIONS: Our study revealed the characteristics of the neurotic personality proteome, which might be intrinsic mechanism of the neurotic population.
RESUMEN
Circulating miRNAs are proposed as a biomarker of heart disease. This study evaluated whether circulating miRNAs could be used as a biomarker for childhood dilated cardiomyopathy (CDCM). A total of 28 participants were enrolled in a discovery set, including patients with CDCM (n = 16) and healthy children (n = 12). The cardiac function of patients with CDCM was characterized by echocardiography and serum miRNA profiles of all participants were assessed by miRNA sequencing. After miRNA profiling, we quantitatively confirmed 148 regulated miRNAs in patients with CDCM compared with healthy subjects, and none were downregulated. Validation of candidate miRNAs was assessed by quantitative real-time polymerase chain reaction in other patients with CDCM (n = 30) and healthy controls (n = 16). A unique signature comprising mir-142-5p, mir-143-3p, mir-27b-3p, and mir-126-3p differentiated patients with CDCM from healthy subjects. Importantly, we observed an increase in mir-126-3p or let-7g in parallel with a robust decrease in the ejection fraction in patients with CDCM, which could differentiate heart failure patients from non-heart failure patients with CDCM. Moreover, mir-126-3p and let-7g were significantly negatively associated with the left ventricular ejection fraction. This study shows that a signature of four serum miRNAs may be a potential biomarker for diagnosing CDCM and assessing heart failure.