Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Macromol Rapid Commun ; 41(2): e1900450, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31778252

RESUMEN

The latest generation of wearable devices features materials that are flexible, conductive, and stretchable, thus meeting the requirements of stability and reliability. However, the metal conductors that are currently used in various equipments cannot achieve these high performance expectations. Hence, a mussel-inspired conductive hydrogel (HAC-B-PAM) is prepared with a facile approach by employing polyacrylamide (PAM), dopamine-functionalized hyaluronic acid (HAC), borax as a dynamic cross-linker agent, and Li+ and Na+ as conductive ions. HAC-B-PAM hydrogels demonstrate an excellent stretchability (up to 2800%), high tensile toughness (42.4 kPa), self-adhesive properties (adhesion strength to porcine skin of 49.6 kPa), and good self-healing properties without any stimuli at room temperature. Furthermore, the fabricated hydrogel-based strain sensor is sensitive to deformation and can detect human body motion. Multifunctional hydrogels can be assembled into flexible wearable devices with potential applications in the field of electronic skin and soft robotics.


Asunto(s)
Adhesivos/química , Bivalvos/química , Hidrogeles/química , Dispositivos Electrónicos Vestibles , Resinas Acrílicas/química , Animales , Técnicas Biosensibles , Boratos/química , Dopamina/química , Elasticidad , Conductividad Eléctrica , Humanos , Ácido Hialurónico/química , Iones/química , Movimiento (Física) , Resistencia al Corte
2.
J Environ Sci (China) ; 90: 395-407, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081335

RESUMEN

In this work, we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite (GN/HCPC) by one-pot carbonization of hyper-cross-linked polymer (HCP) and glucose. The composite combined the advantages of graphene (GN) and hyper-cross-linked porous carbon (HCPC), leading to high specific surface area (396.93 m2/g) and large total pore volume (0.413 cm3/g). The resulting GN/HCPC composite was applied as an adsorbent to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solutions. The influence of different solution conditions including pH, ionic strength, contact time, system temperature and concentration of humic acid was determined. The maximum adsorption capacity of GN/HCPC composite (calculated by the Langmuir model) could reach 348.43 mg/g, which represented increases of 43.6% and 13.6% over those of the as-prepared pure GN and HCPC, respectively. The Langmuir model and pseudo-second-order kinetic model were found to fit well with the adsorption process. Thermodynamic experiments suggested that the adsorption proceeded spontaneously and endothermically. In addition, the GN/HCPC composite showed high adsorption performance toward other organic contaminants including tetracycline, bisphenol A and phenol. Measurement of the adsorption capability of GN/HCPC in secondary effluent revealed a slight decrease over that in pure water solution. This study demonstrated that the GN/HCPC composite can be utilized as a practical and efficient adsorbent for the removal of organic contaminants in wastewater.


Asunto(s)
Clorofenoles/química , Grafito/química , Contaminantes Químicos del Agua/química , Adsorción , Carbono , Cinética , Porosidad
3.
J Nat Prod ; 82(7): 1908-1916, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31241928

RESUMEN

The total synthesis of putative penasulfate A was effectively achieved by a convergent strategy with a longest linear sequence of 14 steps and overall yield of 8.6%. The highlights of our strategy involved an E-selective olefin cross-metathesis, Suzuki cross-coupling, and a copper(I)-catalyzed coupling reaction.


Asunto(s)
Arabinosa/química , Ácidos Grasos/química , Ácidos Grasos/síntesis química , Ácidos Pipecólicos/química , Ácidos Pipecólicos/síntesis química , Alquenos/química , Catálisis , Estructura Molecular , Estereoisomerismo
4.
J Environ Sci (China) ; 78: 215-229, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665640

RESUMEN

A novel polyimide-inlaid amine-rich porous organic block copolymer (PI-b-ARPOP) was prepared via one-step polymerization by using different molar ratios of melamine (MA)/terephthalaldehyde (TA)/pyromellitic dianhydride (PMDA), at molar ratios of 4/3/1, 4/2/2 and 4/1/3. The copolymer contained both aminal groups belonging to ARPOP and imide groups belonging to PI, and the bonding styles of the monomers and growth orientations of the polymeric chains were diversiform, forming an excellent porous structure. Notably, MA/TA/PMDA (4/2/2) had a surface area and pore volume of 487.27 m2/g and 1.169 cm3/g, respectively. The adsorption performance of the materials towards 2,4-dichlorophenol (2,4-DCP) in ultra-pure water was systematically studied. The pH value of 7 was optimal in aqueous solution. Na+ and Cl- ions did not negatively affect the adsorption process, while humic acid (HA) slightly decreased the capacity. The equilibrium time was 40 sec, and the maximum adsorption capacity reached 282.49 mg/g at 298 K. The removal process was endothermic and spontaneous, and the copolymer could maintain its porous structure and consistent performance after regeneration by treatment with alkali. Moreover, to further assess the practical applicability of the material, the adsorption performance towards 2,4-DCP in river water was also investigated. This paper demonstrated that the PI-b-ARPOP can be an efficient and practical adsorbent to remove chlorophenols from aqueous solution.


Asunto(s)
Clorofenoles/química , Polímeros/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Clorofenoles/análisis , Cinética , Porosidad , Contaminantes Químicos del Agua/análisis
5.
Carbohydr Polym ; 329: 121803, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286533

RESUMEN

The combination of transparency, high dielectric permittivity, biocompatibility and flexibility is highly desired in the embedded capacitors. Herein, we show that assembling biodegradable sodium carboxymethyl cellulose (CMC) microfibers in biocompatible silicon elastomer (PDMS) under direct current (DC) electric field enables the production of high dielectric constant composite film with above desired properties. This process leads to the formation of columns of CMC microfibers spanning across the thickness direction, thus generating microfiber depleted regions in between fibers and polymer matrix. The as-prepared composite film with CMC (15 wt%) aligned exhibits a remarkable and an almost sevenfold higher dielectric permittivity as compared to that of the film with CMC randomly dispersed (72 vs 11.4, at 100 Hz). This high CMC loading does not compromise the flexibility and optical transmittance. Interestingly, the compression modulus along the thickness direction increases by >20 times from 16.4 MPa (CMC unaligned) to 339.9 MPa (CMC aligned). We demonstrate a facile strategy of fabricating high dielectric materials combining transparency, biocompatibility, flexibility and compression resistant, making the dielectric materials more versatile. This work shows that biomass derived CMC is a promising filler for high dielectric constant polymer composites benefiting from electric field driven construction of ordered micromorphology.

6.
Dalton Trans ; 51(31): 11851-11858, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35875996

RESUMEN

The development of novel Mn-based phosphor hosts has received increasing interest in the search for highly efficient red emitting phosphors for white LED applications. In this study, Ca9MnK(PO4)7, a compound with the ß-Ca3(PO4)2-type structure, was successfully synthesized by a high-temperature solid-state reaction process. The Eu2+-doped Ca9MnK(PO4)7 phosphor exhibits a broadband red emission peaking at 650 nm. The optimal excitation wavelength is 395 nm, which matches that of commercial ultraviolet (NUV) chips. Codoping Ce3+ ions into the Ca9MnK(PO4)7:Eu2+ phosphor efficiently improves Mn2+ luminescence. Here, Ce3+ acts as a charge compensator rather than a sensitizer and substantially increases the effective number of Eu2+ and finally improves the red emission of Mn2+. The charge compensation mechanism is also verified by codoping some optically inert rare earth ions (Ln3+) including Y3+, La3+ and Gd3+. The results demonstrate that these developed Ca9MnK(PO4)7:Eu2+, Ln3+ phosphors have great potential for application in NUV-based white LEDs. The energy transfer approach combined with the charge compensation technique is valuable for improving the performance of the red-emitting Ca9MnK(PO4)7:Eu2+ phosphor, which can further be used in developing other Mn-based phosphors.

7.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771381

RESUMEN

By using the low loading of the conductor filler to achieve high conductivity is a challenge associated with electrically conductive adhesion. In this study, we show an assembling of nickel-coated polystyrene (Ni@PS) microspheres into 3-dimensional network within the epoxy resin with the assistance of an electric field. The morphology evolution of the microspheres was observed with optical microscopy and scanning electron microscopy (SEM). The response speed of Ni@PS microsphere to the electric field were investigated by measuring the viscosity and shear stress variation of the suspension at a low shear rate with an electrorheological instrument. The SEM results revealed that the Ni@PS microspheres aligned into a pearl-alike structure. The AC impedance spectroscopy confirmed that the conductivity of this pearl-alike alignment was significantly enhanced when compared to the pristine one. The maximum enhancement in conductivity is achieved at 15 wt. % of Ni@PS microspheres with the aligned composites about 3 orders of magnitude as much as unaligned one, typically from ~10-5 S/m to ~10-2 S/m.

8.
ACS Nano ; 14(10): 12546-12557, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32813499

RESUMEN

Room-temperature self-healing and self-growing of the exoskeleton with aligned structures in insects has few analogs in synthetic materials. Insect cuticle, such as elytra in beetles, with a typical lightweight lamellar structure, has shown this capability, which is attributed to the accumulation of phenol oxidase with polyphenol and amine-rich compounds in the hard cuticle. In this study, laminar-structure-based intelligence is imitated by incorporating adaptable and growable pyrogallol (PG)-borax dynamic-covalent bonds into a poly(acrylamide)-clay network. The events that lead to crack formation and water accumulation quickly trigger the deprotection of PG. Subsequently, atmospheric O2, as a regeneration source, activates PG oxidative self-polymerization. Multiple permanent and dynamic cross-links, with the involvement of the sacrificed borax, and initiation of a series of intelligent responses occur. The fabricated composites with an aligned lamellar structure exhibit outstanding characteristics, such as air/water-triggered superstrong adhesion, self-repairing, self-sealing and resealing, and reprocessing. Moreover, the strategy endows the composites with a self-growing capability, which leads to a 4- to 10-fold increase in its strength in an outdoor climate (up to 51 MPa). This study could lead to advances in the development of air/water-responsive composite materials for applications such as adaptive barriers.

9.
Polymers (Basel) ; 11(7)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266198

RESUMEN

A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight and branching degree was successfully prepared with ethylene as the sole monomer feed. The polymerization conditions, including the reaction temperature, the Fi/Ti molar ratio, and the structures of bi- or mononuclear Ti complexes were found to greatly influence the catalytic performances and the properties of obtained polymers. The polymers were characterized by differential scanning calorimetry (DSC), high temperature gel permeation chromatography (GPC) and high temperature 13C NMR spectroscopy, and found to contain ethyl, butyl, as well as some longer branches. The binuclear titanium complexes demonstrated excellent catalytic activity (up to 8.95 × 106 g/molTi·h·atm) and showed a strong positive comonomer effect when combined with the bisiminopyridyl Fe complex. The branching degree can be tuned from 2.53 to 22.89/1000C by changing the reaction conditions or using different copolymerization pre-catalysts. The melting points, crystallinity and molecular weights of the products can also be modified accordingly. The binuclear complex Ti2L1 with methylthio sidearm showed higher capability for comonomer incorporation and produced polymers with higher branching degree and much higher molecular weight compared with the mononuclear analogue.

10.
RSC Adv ; 8(34): 19034-19040, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35539682

RESUMEN

A facile approach to synthesize a polyimide (PI) film with enhanced dimensional stability, a high mechanical property and optical transparency is presented by embedding the partial imidized PI/SiC nanofiber-net in a poly(amic acid) (PAA) solution, followed by removing the solvent and imidization of the PAA. The nanofiber-network self-filled PI film demonstrates a much lower thermal expansion coefficient (CTE), an excellent mechanical property and high transparency retention in comparison to the film fabricated by solution cast. When the SiC content is 6 wt% in PI/SiC nanofibers, the CTE values for the PI film containing 25 wt% PI/SiC nanofibers are 2.80 times lower than the solution cast PI/SiC film. The tensile strength and modulus for the PI/SiC fiber filled film are also improved by 159% and 91% respectively in comparison to the solution cast SiC/PI film. In addition, the PI/SiC nanofiber-network filled PI film exhibits a high optic transparency. The significant improvement in aforementioned properties is contributed to by the long and continuous nanonetwork which acts as a frame to maintain the stable dimension and endow the film with high mechanical properties. Moreover, the nanosized SiC particles were constricted within the nano-fiber to avoid light scattering, so the high transparency of the film was retained.

11.
ACS Appl Mater Interfaces ; 10(18): 15691-15696, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29667402

RESUMEN

It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li1.3Al0.3Ti1.7(PO4)3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.

12.
RSC Adv ; 8(13): 6954-6964, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35540336

RESUMEN

Binuclear and multinuclear complexes have attracted much attention due to their unique catalytic performances for olefin polymerization compared with their mononuclear counterparts. In this work, a series of phenyl-bridged bis-ß-carbonylenamine [O-NSR] (R = alkyl or phenyl) tridentate ligands and their binuclear titanium complexes (Ti2L1-Ti2L5) were synthesized and characterized by 1H NMR, 13C NMR, FTIR and elemental analysis. The molecular structure of ligand L2 (R = n Pr) and its corresponding Ti complex Ti2L2 were further investigated by single-crystal X-ray diffraction, which showed that each titanium coordinated with six atoms to form a distorted octahedral configuration along with the conversion of the ligand from ß-carbonylenamine to ß-imino enol form. Under the activation of MMAO, these complexes catalyzed ethylene polymerization and ethylene/α-olefin copolymerization with extremely high activity (over 106 g mol (Ti)-1 h-1 atm-1) to produce high molecular weight polyethylene. At the same time, wider polydispersity as compared with the mononuclear counterpart TiL6 was observed, indicating that two active catalytic centers may be present, consistent with the asymmetrical crystal structure of the binuclear titanium complex. Furthermore, these complexes possessed better thermal stability than their mononuclear analogues. Compared with the complexes bearing alkylthio sidearms, the complex Ti2L5 bearing a phenylthio sidearm exhibited higher catalytic activity towards ethylene polymerization and produced polyethylene with much higher molecular weight, but with an appreciably lower 1-hexene incorporation ratio. Nevertheless, these bis-ß-carbonylenamine-derived binuclear titanium complexes showed much higher ethylene/1-hexene copolymerization activity and 1-hexene incorporation ratios as compared with the methylene-bridged bis-salicylaldiminato binuclear titanium complexes, and the molecular weight and 1-hexene incorporation ratio could be flexibly tuned by the initial feed of α-olefin commoners and catalyst structures.

13.
J Mater Chem B ; 5(34): 7014-7017, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32263892

RESUMEN

A method for the generation of visible-light-controllable drug release polyelectrolyte multilayers on poly(l-lactide) (PLLA) microneedles is developed by host-guest chemistry. In response to visible light irradiation, model drugs encapsulated on polyelectrolyte multilayers transfer into the skin following brief microneedle application.

14.
Data Brief ; 6: 614-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26909375

RESUMEN

The quantum yield (QY) and lifetime are the important parameters for the photoluminescent materials. The data here report the changes of the QY and lifetime for the quantum dot (QD) nanocomposite after the UV curing of the urethane acrylate prepolymer. The data were collected based on the water soluble CdTe QDs and urethane acrylate prepolymer. Colloidal QDs were in various concentration from 0.5×10(-3) molL(-1) to 10×10(-3) molL(-1), and 1% (wt%) 1173 was the photoinitiator. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively. The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively. Lifetime data showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively.

15.
J Mater Chem B ; 2(28): 4422-4425, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32261542

RESUMEN

Using PEGylated nanoparticles and light-sensitive azobenzenes, a multicolor fluorescence layer-by-layer film loading drug has been constructed based on hydrogen bonding. The multilayer film exhibited multi-responsive drug release properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA