Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(17): 9858-9872, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36095124

RESUMEN

RNA molecules harbor diverse modifications that play important regulatory roles in a variety of biological processes. Over 150 modifications have been identified in RNA molecules. N6-methyladenosine (m6A) and 1-methyladenosine (m1A) are prevalent modifications occurring in various RNA species of mammals. Apart from the single methylation of adenosine (m6A and m1A), dual methylation modification occurring in the nucleobase of adenosine, such as N6,N6-dimethyladenosine (m6,6A), also has been reported to be present in RNA of mammals. Whether there are other forms of dual methylation modification occurring in the nucleobase of adenosine other than m6,6A remains elusive. Here, we reported the existence of a novel adenosine dual methylation modification, i.e. 1,N6-dimethyladenosine (m1,6A), in tRNAs of living organisms. We confirmed that m1,6A is located at position 58 of tRNAs and is prevalent in mammalian cells and tissues. The measured level of m1,6A ranged from 0.0049% to 0.047% in tRNAs. Furthermore, we demonstrated that TRMT6/61A could catalyze the formation of m1,6A in tRNAs and m1,6A could be demethylated by ALKBH3. Collectively, the discovery of m1,6A expands the diversity of RNA modifications and may elicit a new tRNA modification-mediated gene regulation pathway.


Asunto(s)
Adenosina , ARN de Transferencia , Adenosina/genética , Adenosina/metabolismo , Animales , Mamíferos/genética , Mamíferos/metabolismo , Metilación , ARN/genética , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
Anal Chem ; 94(24): 8740-8747, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35678728

RESUMEN

RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Adenosine-to-inosine (A-to-Ino) RNA editing is one of the most prevalent modifications among all types of RNA. Abnormal A-to-InoRNA editing has been demonstrated to be associated with many human diseases. Identification of A-to-Ino editing sites is indispensable to deciphering their biological roles. Herein, by employing the unique property of human endonuclease V (hEndoV), we proposed a hEndoV-mediated sequencing (hEndoV-seq) method for the single-base resolution detection of A-to-InoRNA editing sites. In this approach, the terminal 3'OH of RNA is first blocked by 3'-deoxyadenosine (3'-deoxy-A). Specific cleavage of Ino sites by hEndoV protein produces new terminal 3'OH, which can be identified by sequencing analysis, and therefore offers the site-specific detection of Ino in RNA. The principle of hEndoV-seq is straightforward and the analytical procedure is simple. No chemical reaction is involved in the sequencing library preparation. The whole procedure in hEndoV-seq is carried out under mild conditions and RNA is not prone to degradation. Taken together, the proposed hEndoV-seq method is capable of site-specific identification of A-to-Ino editing in RNA, which provides a valuable tool for elucidating the functions of A-to-Ino editing in RNA.


Asunto(s)
Edición de ARN , ARN , Adenosina/metabolismo , Endonucleasas/metabolismo , Humanos , Inosina , ARN/metabolismo
3.
Anal Chem ; 94(11): 4747-4755, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35266699

RESUMEN

The discovery of reversible modifications in messenger RNA (mRNA) opens new research directions in RNA modification-mediated epigenetic regulation. Yeast is an extensively used model organism in molecular biology. Systematic investigation and profiling of modifications in yeast mRNA would promote our understanding of the physiological regulation mechanisms in yeast. However, due to the high abundance of ribosomal RNA (rRNA) and transfer RNA (tRNA) in total RNA, isolation of low abundance of mRNA frequently suffers from the contamination of rRNA and tRNA, which will lead to the false-positive determination and inaccurate quantification of modifications in mRNA. Therefore, obtaining high-purity mRNA is critical for precise determination and accurate quantification of modifications in mRNA, especially for studies that focus on discovering new ones. Herein, we proposed a successive orthogonal isolation method by combining polyT-based purification and agarose gel electrophoresis purification for extracting high-purity mRNA. With the extracted high-purity yeast mRNA, we systemically explored the modifications in yeast mRNA by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The results showed that in addition to the previously reported eight kinds of modifications, two novel modifications of inosine (Ino) and 2'-O-methylinosine (Im) were identified to be prevalent in yeast mRNA. It is worth noting that Im was reported for the first time, to the best of our knowledge, to exist in living organisms in the three domains of life. Moreover, we observed that the levels of 10 kinds of modifications including Ino and Im in yeast mRNA exhibited dynamic change at different growth stages of yeast cells. Furthermore, Im in mRNA showed a significant decrease while in response to H2O2 treatment. These results indicated that the two newly identified modifications in yeast mRNA were involved in yeast cell growth and response to environmental stress. Taken together, we reported two new modifications of Ino and Im in yeast mRNA, which expends the diversity of RNA modifications in yeast and also suggests new regulators for modulating yeast physiological functions.


Asunto(s)
Saccharomyces cerevisiae , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Epigénesis Genética , Peróxido de Hidrógeno , Inosina , ARN Mensajero/genética , ARN Ribosómico , ARN de Transferencia , Saccharomyces cerevisiae/genética
4.
Anal Chem ; 91(16): 10477-10483, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31318193

RESUMEN

RNA molecules harbor diverse chemical modifications that play important regulatory roles in a variety of biological processes. Up to date, more than 150 modifications have been identified in various RNA species. Most of these modifications occurring in nucleic acids are the methylation of nucleic acids. It has been demonstrated that many of these methylation are reversible and undergo dynamic demethylation. Previous studies established that the demethylation of the two most important and prevalent modifications of 5-methylcytidine (m5C) and N6-methyladenosine (m6A) in nucleic acids is through the hydroxylation of m5C and m6A, forming 5-hydroxymethylcytidine (hm5C) and N6-hydroxymethyladenosine (hm6A), respectively. This indicates the hydroxylation of the methylated nucleosides may be a general pathway for the demethylation of nucleic acid methylation. However, few other hydroxylmethylation modifications have yet to be reported in existence in mammals. In the current study, we developed a neutral enzymatic digestion method for the mild digestion of nucleic acids, followed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. With the established method, we reported the existence of a new hydroxylmethylated nucleosides, N2-hydroxymethylguanosine (hm2G), in mammalian RNA. In addition, we found that the contents of hm2G, as well as N2-methylguanosine (m2G), showed significant differences between thyroid carcinoma tissues and tumor-adjacent normal tissues, indicating that m2G and hm2G in RNA may play certain roles in the carcinogenesis of thyroid carcinoma. Collectively, our study suggests that RNA hydroxylmethylation may be a new prevalent group of modifications existing in RNA, which expands the diversity of nucleic acid modifications and should exert regulatory functions in living organisms.


Asunto(s)
Adenosina/análogos & derivados , Citidina/análogos & derivados , Guanosina/análogos & derivados , ARN/química , Adenosina/química , Adenosina/metabolismo , Animales , Carcinoma/química , Carcinoma/metabolismo , Cromatografía Liquida , Citidina/química , Citidina/metabolismo , Guanosina/química , Guanosina/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólisis , Hidroxilación , Mamíferos , Metilación , ARN/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Neoplasias de la Tiroides/química , Neoplasias de la Tiroides/metabolismo
5.
Chemistry ; 24(39): 9949-9956, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29756662

RESUMEN

RNA contains diverse modifications that exert an important influence in a variety of cellular processes. So far, more than 150 modifications have been identified in various RNA species, mainly in ribosomal RNA (rRNA), transfer RNA (tRNA), and messenger RNA (mRNA). In contrast to rRNA, tRNA, and mRNA, the known modifications in small RNA species have been primarily limited to 2'-O-ribose methylation in plants and inosine in mammals. The methylation of small RNAs in mammals is still unclear. Current methods widely used in the characterization of small RNAs are mainly based on the strategy of nucleic acid hybridization and sequencing, which cannot characterize modifications in small RNAs. Herein, we have systematically investigated modifications in small RNAs composed of 16-28 nucleotides (nt) by establishing an effective isolation and neutral enzymatic digestion of small RNAs in combination with liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This method allowed us to simultaneously detect 57 different types of nucleoside modification. By using this approach, we revealed 24 modifications in small RNAs comprising 16-28 nt from human cells. In addition, we found that the obesity-associated protein (FTO) may demethylate N6 -methyladenosine (m6 A) and N6 ,2'-O-dimethyladenosine (m6 Am) in small RNAs of 16-28 nt. Our study demonstrates the existence of diverse modifications in small RNAs composed of 16-28 nt, which may promote in-depth understanding of the regulatory roles of noncoding RNAs.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Nucleósidos/metabolismo , Nucleótidos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , ARN/química , Adenosina/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Animales , Cromatografía Liquida , Humanos , Metilación , Nucleósidos/química , Nucleótidos/química , ARN Mensajero/química , ARN de Transferencia/química , Espectrometría de Masas en Tándem
6.
Methods Mol Biol ; 2298: 247-259, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085250

RESUMEN

The recent discovery of reversible chemical modifications on mRNA has opened a new era of post-transcriptional gene regulation in eukaryotes. Among these modifications identified in eukaryotic mRNA, N7-methylguanosine (m7G) is unique owing to its presence in the 5' cap structure. Recently, it has been reported that m7G also exists internally in mRNA. Here, we describe a protocol of combining differential enzymatic digestion with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to detect internal m7G modification in mRNA. This protocol can also be used to quantify the level of m7G at both the 5' cap and internal positions of mRNA.


Asunto(s)
Guanosina/análogos & derivados , ARN Mensajero/genética , Línea Celular , Línea Celular Tumoral , Cromatografía Liquida/métodos , Eucariontes/genética , Guanosina/genética , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Metilación , Interferencia de ARN/fisiología , Espectrometría de Masas en Tándem/métodos
7.
Chem Sci ; 12(23): 8149-8156, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194705

RESUMEN

RNA modifications play critical roles in regulating a variety of physiological processes. Methylation is the most prevalent modification occurring in RNA. Three isomeric cytidine methylation modifications have been reported in RNA, including 3-methylcytidine (m3C), N4-methylcytidine (m4C), and 5-methylcytidine (m5C), in mammals. Aside from the single methylation on the nucleobase of cytidines, dual methylation modifications occurring in both the 2' hydroxyl of ribose and the nucleobase of cytidines also have been reported, including N4,2'-O-dimethylcytidine (m4Cm) and 5,2'-O-dimethylcytidine (m5Cm). m4Cm has been found in the 16S rRNA of E. coli, while m5Cm has been found in the tRNA of terminal thermophilic archaea and mammals. However, unlike m4Cm and m5Cm, the presumed dual methylation of 3,2'-O-dimethylcytidine (m3Cm) has never been discovered in living organisms. Thus, the presence of m3Cm in RNA remains an open question. In the current study, we synthesized m3Cm and established a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method to determine the dimethylation of cytidines, m3Cm, m4Cm and m5Cm. Under optimized analytical conditions, m3Cm, m4Cm and m5Cm can be clearly distinguished. Using the method, we discovered the existence of m3Cm in the RNA of mammals. The identified m3Cm is a novel modification that hasn't been reported in the three-domain system, including archaea, bacteria, and eukaryotes. We confirmed that m3Cm mainly existed in the small RNA (<200 nt) of mammals. In addition, we identified, for the first time, the presence of m4Cm in the 18S rRNA of mammalian cells. The stable isotope tracing monitored by mass spectrometry demonstrated that S-adenosyl-l-methionine was a methyl donor for all three dimethylations of cytidines in RNA. The discovery of m3Cm broadens the diversity of RNA modifications in living organisms. In addition, the discovery of m3Cm and m4Cm in mammals opens new directions in understanding RNA modification-mediated RNA processing and gene expression regulation.

8.
Chem Sci ; 12(34): 11322-11329, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34567494

RESUMEN

DNA cytosine methylation (5-methylcytosine, 5mC) is the most important epigenetic mark in higher eukaryotes. 5mC in genomes is dynamically controlled by writers and erasers. DNA (cytosine-5)-methyltransferases (DNMTs) are responsible for the generation and maintenance of 5mC in genomes. Active demethylation of 5-methylcytosine (5mC) is achieved by ten-eleven translocation (TET) dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are further processed by thymine DNA glycosylase (TDG)-initiated base excision repair (BER) to restore unmodified cytosines. The TET-TDG-BER pathway could cause the production of DNA strand breaks and therefore jeopardize the integrity of genomes. Here, we investigated the direct decarboxylation of 5caC in mammalian genomes by using metabolic labeling with 2'-fluorinated 5caC (F-5caC) and mass spectrometry analysis. Our results clearly demonstrated the decarboxylation of 5caC occurring in mammalian genomes, which unveiled that, in addition to the TET-TDG-BER pathway, the direct decarboxylation of TET-produced 5caC constituted a new pathway for active demethylation of 5mC in mammalian genomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA