Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lipids Health Dis ; 19(1): 247, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261644

RESUMEN

BACKGROUND: Standard lipid panel assays employing chemical/enzymatic methods measure total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C), from which are calculated estimates of low-density lipoprotein cholesterol (LDL-C). These lipid measures are used universally to guide management of atherosclerotic cardiovascular disease risk. Apolipoprotein B (apoB) is generally acknowledged to be superior to LDL-C for lipid-lowering therapeutic decision-making, but apoB immunoassays are performed relatively infrequently due to the added analytic cost. The aim of this study was to develop and validate the performance of a rapid, high-throughput, reagent-less assay producing an "Extended Lipid Panel" (ELP) that includes apoB, using the Vantera® nuclear magnetic resonance (NMR) analyzer platform already deployed clinically for lipoprotein particle and other testing. METHODS: Partial least squares regression models, using as input a defined region of proton NMR spectra of plasma or serum, were created to simultaneously quantify TC, TG, HDL-C, and apoB. Large training sets (n > ~ 1000) of patient sera analyzed independently for lipids and apoB by chemical methods were employed to ensure prediction models reflect the wide lipid compositional diversity of the population. The analytical performance of the NMR ELP assay was comprehensively evaluated. RESULTS: Excellent agreement was demonstrated between chemically-measured and ELP assay values of TC, TG, HDL-C and apoB with correlation coefficients ranging from 0.980 to 0.997. Within-run precision studies measured using low, medium, and high level serum pools gave coefficients of variation for the 4 analytes ranging from 1.0 to 3.8% for the low, 1.0 to 1.7% for the medium, and 0.9 to 1.3% for the high pools. Corresponding values for within-lab precision over 20 days were 1.4 to 3.6%, 1.2 to 2.3%, and 1.0 to 1.9%, respectively. Independent testing at three sites over 5 days produced highly consistent assay results. No major interference was observed from 38 endogenous or exogenous substances tested. CONCLUSIONS: Extensive assay performance evaluations validate that the NMR ELP assay is efficient, robust, and substantially equivalent to standard chemistry assays for the clinical measurement of lipids and apoB. Routine reporting of apoB alongside standard lipid measures could facilitate more widespread utilization of apoB for clinical decision-making.


Asunto(s)
Apolipoproteínas B/sangre , Lípidos/sangre , Espectroscopía de Resonancia Magnética/métodos , Colesterol/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Toma de Decisiones , Humanos , Inmunoensayo , Análisis de los Mínimos Cuadrados , Modelos Lineales , Estándares de Referencia , Análisis de Regresión , Reproducibilidad de los Resultados , Temperatura , Triglicéridos/sangre
2.
Diagnostics (Basel) ; 12(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36359450

RESUMEN

Urine citrate is often used to identify patients at risk of recurrent nephrolithiasis or kidney stones. A high-throughput assay was developed to measure urine citrate and creatinine on the Vantera® Clinical Analyzer, a nuclear magnetic resonance (NMR) instrument designed for the clinical laboratory. Assay performance was evaluated and comparisons between the NMR and chemistry results were conducted. Linearity was demonstrated over a wide range of concentrations for citrate (6 and 2040 mg/L) and creatinine (2.8 and 1308 mg/dL). Intra-and inter-assay precision (%CV) ranged from 0.9 to 3.7% for citrate and 0.4 to 2.1% for creatinine. The correlation coefficients for the comparison between NMR and chemistry results were 0.98 (Y = 1.00X + 5.0) for citrate and 0.96 (Y = 0.968X + 0.97) for creatinine. The reference intervals for both analytes were confirmed. Ten endogenous and exogenous substances were tested and none were found to interfere with the assay results. In conclusion, the newly developed high-throughput NMR assay exhibited robust performance and generated results comparable to the currently utilized chemistry tests, thereby providing an alternative means to simultaneously quantify urine citrate and creatinine for clinical and research use. Furthermore, the NMR assay does not exhibit the same interference limitations as the chemistry tests and it enables multiplexing with other urine metabolite assays which saves time and costs.

3.
Am J Med Sci ; 362(2): 113-121, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33865828

RESUMEN

Acute hepatic porphyria (AHP) is a group of rare, metabolic diseases where patients can experience acute neurovisceral attacks, chronic symptoms, and long-term complications. Diagnostic biochemical testing is widely available and effective, but a substantial time from symptom onset to diagnosis often delays treatment and increases morbidity. A panel of laboratory scientists and clinical AHP specialists collaborated to produce recommendations on how to enhance biochemical diagnosis of AHP in the USA. AHP should be considered in the differential diagnosis of unexplained abdominal pain, the most common symptom, soon after excluding common causes. Measurement of porphobilinogen (PBG) and porphyrins in a random urine sample, with results normalized to creatinine, is recommended as an effective and cost-efficient initial test for AHP. Delta-aminolevulinic acid testing may be included but is not essential. The optimal time to collect a urine sample is during an attack. Substantial PBG elevation confirms an AHP diagnosis and allows for prompt treatment initiation. Additional testing can determine AHP subtype and identify at-risk family members. Increased awareness of AHP and correct diagnostic methods will reduce diagnostic delay and improve patient outcomes.


Asunto(s)
Médicos de Atención Primaria , Porfobilinógeno Sintasa/deficiencia , Porfirias Hepáticas/sangre , Porfirias Hepáticas/diagnóstico , Guías de Práctica Clínica como Asunto , Humanos , Porfobilinógeno Sintasa/sangre , Porfirias Hepáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA