Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(12): e3002416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048319

RESUMEN

Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific. Here, we develop a systematic gene essentiality mapping method scalable to new phage-host combinations that facilitate the identification of nonessential genes. As a proof of concept, we use an arrayed genome-wide CRISPR interference (CRISPRi) assay to map gene essentiality landscape in the canonical coliphages λ and P1. Results from a single panel of CRISPRi probes largely recapitulate the essential gene roster determined from decades of genetic analysis for lambda and provide new insights into essential and nonessential loci in P1. We present evidence of how CRISPRi polarity can lead to false positive gene essentiality assignments and recommend caution towards interpreting CRISPRi data on gene essentiality when applied to less studied phages. Finally, we show that we can engineer phages by inserting DNA barcodes into newly identified inessential regions, which will empower processes of identification, quantification, and tracking of phages in diverse applications.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , ADN , Genes Esenciales/genética
2.
Nat Chem Biol ; 19(6): 759-766, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36805702

RESUMEN

Single-strand RNA (ssRNA) Fiersviridae phages cause host lysis with a product of single gene (sgl for single-gene lysis; product Sgl) that induces autolysis. Many different Sgls have been discovered, but the molecular targets of only a few have been identified. In this study, we used a high-throughput genetic screen to uncover genome-wide host suppressors of diverse Sgls. In addition to validating known molecular mechanisms, we discovered that the Sgl of PP7, an ssRNA phage of Pseudomonas aeruginosa, targets MurJ, the flippase responsible for lipid II export, previously shown to be the target of the Sgl of coliphage M. These two Sgls, which are unrelated and predicted to have opposite membrane topology, thus represent a case of convergent evolution. We extended the genetic screens to other uncharacterized Sgls and uncovered a common set of multicopy suppressors, suggesting that these Sgls act by the same or similar mechanism.


Asunto(s)
Bacteriófagos , Genes Virales , Pseudomonas aeruginosa , Bacteriófagos/genética , Pseudomonas aeruginosa/virología , Evolución Biológica
3.
Nature ; 575(7783): 505-511, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723265

RESUMEN

Chronic liver disease due to alcohol-use disorder contributes markedly to the global burden of disease and mortality1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-associated liver disease. The gut microbiota promotes ethanol-induced liver disease in mice4, but little is known about the microbial factors that are responsible for this process. Here we identify cytolysin-a two-subunit exotoxin that is secreted by Enterococcus faecalis5,6-as a cause of hepatocyte death and liver injury. Compared with non-alcoholic individuals or patients with alcohol-use disorder, patients with alcoholic hepatitis have increased faecal numbers of E. faecalis. The presence of cytolysin-positive (cytolytic) E. faecalis correlated with the severity of liver disease and with mortality in patients with alcoholic hepatitis. Using humanized mice that were colonized with bacteria from the faeces of patients with alcoholic hepatitis, we investigated the therapeutic effects of bacteriophages that target cytolytic E. faecalis. We found that these bacteriophages decrease cytolysin in the liver and abolish ethanol-induced liver disease in humanized mice. Our findings link cytolytic E. faecalis with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis. We show that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota. A clinical trial with a larger cohort is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with alcoholic hepatitis.


Asunto(s)
Bacteriófagos/fisiología , Enterococcus faecalis/patogenicidad , Enterococcus faecalis/virología , Microbioma Gastrointestinal , Hepatitis Alcohólica/microbiología , Hepatitis Alcohólica/terapia , Terapia de Fagos , Alcoholismo/complicaciones , Alcoholismo/microbiología , Animales , Enterococcus faecalis/aislamiento & purificación , Etanol/efectos adversos , Hígado Graso/complicaciones , Hígado Graso/microbiología , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Hepatitis Alcohólica/complicaciones , Hepatitis Alcohólica/mortalidad , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Perforina/metabolismo
4.
J Bacteriol ; 206(3): e0038423, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38426721

RESUMEN

Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as sgl. Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here, we designate these as type I Sgls. In this formalism, the other eight Sgls are assigned to type II, the best-studied of which is protein L of the paradigm F-specific ssRNA phage MS2. Comparisons have suggested that type II Sgls have four sequence elements distinguished by hydrophobic and polar character. Environmental metatranscriptomics has revealed thousands of new ssRNA phage genomes, each of which presumably has an Sgl. Here, we describe methods to distinguish type I and type II Sgls. Using phase contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit the net synthesis of PG, as measured by radio-labeling of PG. Finally, we provide direct evidence that the Sgl from Pseudomonas phage PP7 is a type I Sgl, in support of a recent report based on a genetic selection. This shows that the putative four-element sequence structure suggested for L is not a reliable discriminator for the operational characterization of Sgls. IMPORTANCE: The ssRNA phage world has recently undergone a metagenomic expansion upward of a thousandfold. Each genome likely carries at least one single-gene lysis (sgl) cistron encoding a protein that single-handedly induces host autolysis. Here, we initiate an approach to segregate the Sgls into operational types based on physiological analysis, as a first step toward the alluring goal of finding many new ways to induce bacterial death and the attendant expectations for new antibiotic development.


Asunto(s)
Bacteriófagos , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Bacterias/genética , Antibacterianos/metabolismo , Pared Celular/metabolismo , Metagenómica , ARN/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(41): 25751-25758, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989140

RESUMEN

Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.


Asunto(s)
Escherichia coli/virología , Fimbrias Bacterianas/virología , Levivirus/fisiología , Virus ARN/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Levivirus/genética , Virus ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
6.
J Bacteriol ; 204(1): JB0021421, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34339297

RESUMEN

Most phages of Gram-negative hosts encode spanins for disruption of the outer membrane, the last step in host lysis. However, bioinformatic analysis indicates that ∼15% of these phages lack a spanin gene, suggesting they have an alternate way of disrupting the OM. Here, we show that the T7-like coliphage phiKT causes the explosive cell lysis associated with spanin activity despite not encoding spanins. A putative lysis cassette cloned from the phiKT late gene region includes the hypothetical novel gene 28 located between the holin and endolysin genes and supports inducible lysis in E. coli K-12. Moreover, induction of an isogenic construct lacking gene 28 resulted in divalent cation-stabilized spherical cells rather than lysis, implicating gp28 in OM disruption. Additionally, gp28 was shown to complement the lysis defect of a spanin-null λ lysogen. Gene 28 encodes a 56-amino acid cationic protein with predicted amphipathic helical structure and is membrane-associated after lysis. Urea and KCl washes did not release gp28 from the particulate, suggesting a strong hydrophobic membrane interaction. Fluorescence microscopy supports membrane localization of the gp28 protein prior to lysis. Gp28 is similar in size, charge, predicted fold, and membrane association to the human cathelicidin antimicrobial peptide LL-37. Synthesized gp28 behaved similar to LL-37 in standard assays mixing peptide and cells to measure bactericidal and inhibitory effects. Taken together, these results indicate that phiKT gp28 is a phage-encoded cationic antimicrobial peptide that disrupts bacterial outer membranes during host lysis and thus establishes a new class of phage lysis proteins, the disruptins. Significance We provide evidence that phiKT produces an antimicrobial peptide for outer membrane disruption during lysis. This protein, designated as a disruptin, is a new paradigm for phage lysis and has no similarities to other known lysis genes. Although many mechanisms have been proposed for the function of antimicrobial peptides, there is no consensus on the molecular basis of membrane disruption. Additionally, there is no established genetic system to support such studies. Therefore, the phiKT disruptin may represent the first genetically tractable antimicrobial peptide, facilitating mechanistic analyses.

7.
PLoS Comput Biol ; 16(11): e1008214, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137082

RESUMEN

In the modern genomic era, scientists without extensive bioinformatic training need to apply high-power computational analyses to critical tasks like phage genome annotation. At the Center for Phage Technology (CPT), we developed a suite of phage-oriented tools housed in open, user-friendly web-based interfaces. A Galaxy platform conducts computationally intensive analyses and Apollo, a collaborative genome annotation editor, visualizes the results of these analyses. The collection includes open source applications such as the BLAST+ suite, InterProScan, and several gene callers, as well as unique tools developed at the CPT that allow maximum user flexibility. We describe in detail programs for finding Shine-Dalgarno sequences, resources used for confident identification of lysis genes such as spanins, and methods used for identifying interrupted genes that contain frameshifts or introns. At the CPT, genome annotation is separated into two robust segments that are facilitated through the automated execution of many tools chained together in an operation called a workflow. First, the structural annotation workflow results in gene and other feature calls. This is followed by a functional annotation workflow that combines sequence comparisons and conserved domain searching, which is contextualized to allow integrated evidence assessment in functional prediction. Finally, we describe a workflow used for comparative genomics. Using this multi-purpose platform enables researchers to easily and accurately annotate an entire phage genome. The portal can be accessed at https://cpt.tamu.edu/galaxy-pub with accompanying user training material.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Anotación de Secuencia Molecular , Interfaz Usuario-Computador , Bases de Datos Genéticas , Internet , Control de Calidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-34427159

RESUMEN

Water reuse programs are being explored to close the gap between supply and demand for irrigation in agriculture. However, these sources could contain hazardous microbial contaminants, and pose risks to public health. This study aimed to grow and irrigate romaine lettuce with inoculated wastewater effluent to track AP205 bacteriophage prevalence through cultivation and post-harvest storage. AP205 is a bacteriophage and was used as a surrogate for enteric viruses. Low and high dosages (mean ± standard deviation) of AP205 at 4.8 ± 0.4 log PFU/mL and 6.6 ± 0.2 log PFU/mL; respectively, were prepared to examine viral load influence on contamination levels. Foliage, leachate, and soil contamination levels were directly related to AP205 concentrations in the effluent. AP205 concentrations increased throughout cultivation for foliage and leachate, suggesting bacteriophage accumulation. During post-harvest storage (14 day at 4 °C), there was a significant decrease in AP205 concentration on the foliage. Results show that wastewater effluents usage for leafy greens cultivation can pose risks to humans and additional steps are required to safely apply wastewater effluents to soils and crops.


Asunto(s)
Bacteriófagos , Enterovirus , Contaminación de Alimentos/análisis , Humanos , Lactuca , Aguas Residuales
9.
J Biol Chem ; 294(10): 3350-3358, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30420429

RESUMEN

In general, the last step in the vegetative cycle of bacterial viruses, or bacteriophages, is lysis of the host. dsDNA phages require multiple lysis proteins, including at least one enzyme that degrades the cell wall (peptidoglycan (PG)). In contrast, the lytic ssDNA and ssRNA phages have a single lysis protein that achieves cell lysis without enzymatically degrading the PG. Here, we review four "single-gene lysis" or Sgl proteins. Three of the Sgls block bacterial cell wall synthesis by binding to and inhibiting several enzymes in the PG precursor pathway. The target of the fourth Sgl, L from bacteriophage MS2, is still unknown, but we review evidence indicating that it is likely a protein involved in maintaining cell wall integrity. Although only a few phage genomes are available to date, the ssRNA Leviviridae are a rich source of novel Sgls, which may facilitate further unraveling of bacterial cell wall biosynthesis and discovery of new antibacterial agents.


Asunto(s)
Bacterias , Proteínas Bacterianas , Pared Celular , Genes Virales/fisiología , Levivirus/fisiología , Peptidoglicano , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/virología , Peptidoglicano/genética , Peptidoglicano/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(44): 11697-11702, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078304

RESUMEN

In single-stranded RNA bacteriophages (ssRNA phages) a single copy of the maturation protein binds the genomic RNA (gRNA) and is required for attachment of the phage to the host pilus. For the canonical Allolevivirus Qß the maturation protein, A2, has an additional role as the lysis protein, by its ability to bind and inhibit MurA, which is involved in peptidoglycan biosynthesis. Here, we determined structures of Qß virions, virus-like particles, and the Qß-MurA complex using single-particle cryoelectron microscopy, at 4.7-Å, 3.3-Å, and 6.1-Å resolutions, respectively. We identified the outer surface of the ß-region in A2 as the MurA-binding interface. Moreover, the pattern of MurA mutations that block Qß lysis and the conformational changes of MurA that facilitate A2 binding were found to be due to the intimate fit between A2 and the region encompassing the closed catalytic cleft of substrate-liganded MurA. Additionally, by comparing the Qß virion with Qß virus-like particles that lack a maturation protein, we observed a structural rearrangement in the capsid coat proteins that is required to package the viral gRNA in its dominant conformation. Unexpectedly, we found a coat protein dimer sequestered in the interior of the virion. This coat protein dimer binds to the gRNA and interacts with the buried α-region of A2, suggesting that it is sequestered during the early stage of capsid formation to promote the gRNA condensation required for genome packaging. These internalized coat proteins are the most asymmetrically arranged major capsid proteins yet observed in virus structures.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Allolevivirus/ultraestructura , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Cápside/química , Proteínas de la Cápside/química , Regulación Viral de la Expresión Génica , Conformación Proteica , ARN Viral , Virión/metabolismo
11.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30135120

RESUMEN

Spanins are bacteriophage lysis proteins responsible for disruption of the outer membrane, the final step of Gram-negative host lysis. The absence of spanins results in a terminal phenotype of fragile spherical cells. The phage T1 employs a unimolecular spanin gp11 that has an N-terminal lipoylation signal and a C-terminal transmembrane domain. Upon maturation and localization, gp11 ends up as an outer membrane lipoprotein with a C-terminal transmembrane domain embedded in the inner membrane, thus connecting both membranes as a covalent polypeptide chain. Unlike the two-component spanins encoded by most of the other phages, including lambda, the unimolecular spanins have not been studied extensively. In this work, we show that the gp11 mutants lacking either membrane localization signal were nonfunctional and conferred a partially dominant phenotype. Translation from internal start sites within the gp11 coding sequence generated a shorter product which exhibited a negative regulatory effect on gp11 function. Fluorescence spectroscopy time-lapse videos of gp11-GFP expression showed gp11 accumulated in distinct punctate foci, suggesting localized clusters assembled within the peptidoglycan meshwork. In addition, gp11 was shown to mediate lysis in the absence of holin and endolysin function when peptidoglycan density was depleted by starvation for murein precursors. This result indicates that the peptidoglycan is a negative regulator of gp11 function. This supports a model in which gp11 acts by fusing the inner and outer membranes, a mode of action analogous to but mechanistically distinct from that proposed for the two-component spanin systems.IMPORTANCE Spanins have been proposed to fuse the cytoplasmic and outer membranes during phage lysis. Recent work with the lambda spanins Rz-Rz1, which are similar to class I viral fusion proteins, has shed light on the functional domains and requirements for two-component spanin function. Here we report, for the first time, a genetic and biochemical approach to characterize unimolecular spanins, which are structurally and mechanistically different from two-component spanins. Considering similar predicted secondary structures within the ectodomains, unimolecular spanins can be regarded as a prokaryotic version of type II viral membrane fusion proteins. This study not only adds to our understanding of regulation of phage lysis at various levels but also provides a prokaryotic genetically tractable platform for interrogating class II-like membrane fusion proteins.


Asunto(s)
Bacteriólisis/genética , Endopeptidasas/genética , Siphoviridae/genética , Proteínas Virales/genética , Escherichia coli/virología , Fusión de Membrana/fisiología , Proteínas de la Membrana/genética , Estructura Secundaria de Proteína
12.
Proc Natl Acad Sci U S A ; 113(41): 11519-11524, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671640

RESUMEN

Single-stranded (ss) RNA viruses infect all domains of life. To date, for most ssRNA virions, only the structures of the capsids and their associated protein components have been resolved to high resolution. Qß, an ssRNA phage specific for the conjugative F-pilus, has a T = 3 icosahedral lattice of coat proteins assembled around its 4,217 nucleotides of genomic RNA (gRNA). In the mature virion, the maturation protein, A2, binds to the gRNA and is required for adsorption to the F-pilus. Here, we report the cryo-electron microscopy (cryo-EM) structures of Qß with and without symmetry applied. The icosahedral structure, at 3.7-Å resolution, resolves loops not previously seen in the published X-ray structure, whereas the asymmetric structure, at 7-Å resolution, reveals A2 and the gRNA. A2 contains a bundle of α-helices and replaces one dimer of coat proteins at a twofold axis. The helix bundle binds gRNA, causing denser packing of RNA in its proximity, which asymmetrically expands the surrounding coat protein shell to potentially facilitate RNA release during infection. We observe a fixed pattern of gRNA organization among all viral particles, with the major and minor grooves of RNA helices clearly visible. A single layer of RNA directly contacts every copy of the coat protein, with one-third of the interactions occurring at operator-like RNA hairpins. These RNA-coat interactions stabilize the tertiary structure of gRNA within the virion, which could further provide a roadmap for capsid assembly.


Asunto(s)
Allolevivirus/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Genoma Viral , ARN Viral/química , ARN Viral/ultraestructura , Cápside/química , Cristalografía por Rayos X , Motivos EF Hand , Modelos Moleculares , Multimerización de Proteína
13.
Genes Dev ; 25(21): 2278-90, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22006182

RESUMEN

The mechanism of Bax/Bak-dependent mitochondrial outer membrane permeabilization (MOMP), a central apoptotic event primarily controlled by the Bcl-2 family proteins, remains not well understood. Here, we express active Bax/Bak in bacteria, the putative origin of mitochondria, and examine their functional similarities to the λ bacteriophage (λ) holin. As critical effectors for bacterial lysis, holin oligomers form membrane lesions, through which endolysin, a muralytic enzyme, escapes the cytoplasm to attack the cell wall at the end of the infection cycle. We found that active Bax/Bak, but not any other Bcl-2 family protein, displays holin behavior, causing bacterial lysis by releasing endolysin in an oligomerization-dependent manner. Strikingly, replacing the holin gene with active alleles of Bax/Bak results in plaque-forming phages. Furthermore, we provide evidence that active Bax produces large membrane holes, the size of which is controlled by structural elements of Bax. Notably, lysis by active Bax is inhibited by Bcl-xL, and the lysis activity of the wild-type Bax is stimulated by a BH3-only protein. Together, these results mechanistically link MOMP to holin-mediated hole formation in the bacterial plasma membrane.


Asunto(s)
Proteínas Virales/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/fisiología , Bacteriófago lambda/genética , Escherichia coli/genética , Genoma Viral/genética , Mutación , Porinas/metabolismo , Proteínas Virales/genética
14.
BMC Bioinformatics ; 19(1): 326, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30219026

RESUMEN

BACKGROUND: Spanins are phage lysis proteins required to disrupt the outer membrane. Phages employ either two-component spanins or unimolecular spanins in this final step of Gram-negative host lysis. Two-component spanins like Rz-Rz1 from phage lambda consist of an integral inner membrane protein: i-spanin, and an outer membrane lipoprotein: o-spanin, that form a complex spanning the periplasm. Two-component spanins exist in three different genetic architectures; embedded, overlapped and separated. In contrast, the unimolecular spanins, like gp11 from phage T1, have an N-terminal lipoylation signal sequence and a C-terminal transmembrane domain to account for the topology requirements. Our proposed model for spanin function, for both spanin types, follows a common theme of the outer membrane getting fused with the inner membrane, effecting the release of progeny virions. RESULTS: Here we present a SpaninDataBase which consists of 528 two-component spanins and 58 unimolecular spanins identified in this analysis. Primary analysis revealed significant differences in the secondary structure predictions for the periplasmic domains of the two-component and unimolecular spanin types, as well as within the three different genetic architectures of the two-component spanins. Using a threshold of 40% sequence identity over 40% sequence length, we were able to group the spanins into 143 i-spanin, 125 o-spanin and 13 u-spanin families. More than 40% of these families from each type were singletons, underlining the extreme diversity of this class of lysis proteins. Multiple sequence alignments of periplasmic domains demonstrated conserved secondary structure patterns and domain organization within family members. Furthermore, analysis of families with members from different architecture allowed us to interpret the evolutionary dynamics of spanin gene arrangement. Also, the potential universal role of intermolecular disulfide bonds in two-component spanin function was substantiated through bioinformatic and genetic approaches. Additionally, a novel lipobox motif, AWAC, was identified and experimentally verified. CONCLUSIONS: The findings from this bioinformatic approach gave us instructive insights into spanin function, evolution, domain organization and provide a platform for future spanin annotation, as well as biochemical and genetic experiments. They also establish that spanins, like viral membrane fusion proteins, adopt different strategies to achieve fusion of the inner and outer membranes.


Asunto(s)
Bacteriófago lambda/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófago lambda/genética , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Proteínas Virales/química
15.
Mol Microbiol ; 105(3): 399-412, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28509398

RESUMEN

Bacterial Type I restriction-modification (R-M) systems present a major barrier to foreign DNA entering the bacterial cell. The temperate phage P1 packages several proteins into the virion that protect the phage DNA from host restriction. Isogenic P1 deletion mutants were used to reconstitute the previously described restriction phenotypes associated with darA and darB. While P1ΔdarA and P1ΔdarB produced the expected phenotypes, deletions of adjacent genes hdf and ddrA also produced darA-like phenotypes and deletion of ulx produced a darB-like phenotype, implicating several new proteins of previously unknown function in the P1 dar antirestriction system. Interestingly, disruption of ddrB decreased P1's sensitivity to EcoB and EcoK restriction. Proteomic analysis of purified virions suggests that packaging of antirestriction components into P1 virions follows a distinct pathway that begins with the incorporation of DarA and Hdf and concludes with DarB and Ulx. Electron microscopy analysis showed that hdf and darA mutants also produce abnormally high proportions of virions with aberrant small heads, which suggests Hdf and DarA play a role in capsid morphogenesis. The P1 antirestriction system is more complex than previously realized and is comprised of multiple proteins including DdrA, DdrB, Hdf, and Ulx in addition to DarA and DarB.


Asunto(s)
Bacteriófago P1/metabolismo , Cápside/fisiología , Proteínas Bacterianas/metabolismo , Bacteriófago P1/genética , Bacteriófagos/genética , Enzimas de Restricción-Modificación del ADN/genética , ADN Viral/metabolismo , Escherichia coli/genética , Morfogénesis , Proteómica , Proteínas Virales/metabolismo , Virión/genética
16.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468876

RESUMEN

The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality.IMPORTANCECaudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such investigations have been reported. Here, we report a suppressor analysis of lambda spanin function. To our knowledge this is the first suppression analysis of a class I-like complex and also the first such analysis of a prokaryote membrane fusion system.


Asunto(s)
Bacteriófago lambda/crecimiento & desarrollo , Escherichia coli/virología , Proteínas Mutantes/metabolismo , Supresión Genética , Proteínas Virales/metabolismo , Bacteriófago lambda/genética , Análisis Mutacional de ADN , Modelos Biológicos , Proteínas Mutantes/genética , Conformación Proteica , Dominios Proteicos , Ensayo de Placa Viral , Proteínas Virales/química , Proteínas Virales/genética
17.
Proc Natl Acad Sci U S A ; 112(17): 5497-502, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870259

RESUMEN

In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of µm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.


Asunto(s)
Bacteriófago lambda/fisiología , Membrana Celular/metabolismo , Endopeptidasas/fisiología , Escherichia coli/virología , Fusión de Membrana , Proteínas Virales/metabolismo , Liberación del Virus/fisiología , Membrana Celular/genética , Endopeptidasas/genética , Escherichia coli/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo , Proteínas Virales/genética
18.
J Bacteriol ; 199(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28396351

RESUMEN

The L protein of the single-stranded RNA phage MS2 causes lysis of Escherichia coli without inducing bacteriolytic activity or inhibiting net peptidoglycan (PG) synthesis. To find host genes required for L-mediated lysis, spontaneous Ill (insensitivity to Llysis) mutants were selected as survivors of L expression and shown to have a missense change of the highly conserved proline (P330Q) in the C-terminal domain of DnaJ. In the dnaJP330Q mutant host, L-mediated lysis is completely blocked at 30°C without affecting the intracellular levels of L. At higher temperatures (37°C and 42°C), both lysis and L accumulation are delayed. The lysis block at 30°C in the dnaJP330Q mutant was recessive and could be suppressed by Lovercomes dnaJ (Lodj ) alleles selected for restoration of lysis. All three Lodj alleles lack the highly basic N-terminal half of the lysis protein and cause lysis ∼20 min earlier than full-length L. DnaJ was found to form a complex with full-length L. This complex was abrogated by the P330Q mutation and was absent with the Lodj truncations. These results suggest that, in the absence of interaction with DnaJ, the N-terminal domain of L interferes with its ability to bind to its unknown target. The lysis retardation and DnaJ chaperone dependency conferred by the nonessential, highly basic N-terminal domain of L resembles the SlyD chaperone dependency conferred by the highly basic C-terminal domain of the E lysis protein of ϕX174, suggesting a common theme where single-gene lysis can be modulated by host factors influenced by physiological conditions.IMPORTANCE Small single-stranded nucleic acid lytic phages (Microviridae and Leviviridae) lyse their host by expressing a single "protein antibiotic." The protein antibiotics from two out of three prototypic small lytic viruses have been shown to inhibit two different steps in the conserved PG biosynthesis pathway. However, the molecular basis of lysis caused by L, the lysis protein of the third prototypic virus, MS2, is unknown. The significance of our research lies in the identification of DnaJ as a chaperone in the MS2 L lysis pathway and the identification of the minimal lytic domain of MS2 L. Additionally, our research highlights the importance of the highly conserved P330 residue in the C-terminal domain of DnaJ for specific protein interactions.


Asunto(s)
Bacteriólisis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas del Choque Térmico HSP40/metabolismo , Interacciones Huésped-Parásitos , Levivirus/crecimiento & desarrollo , Proteínas Virales/metabolismo , Proteínas de Escherichia coli/genética , Proteínas del Choque Térmico HSP40/genética , Temperatura
19.
Artículo en Inglés | MEDLINE | ID: mdl-28807909

RESUMEN

Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.


Asunto(s)
Infecciones por Acinetobacter/terapia , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/uso terapéutico , Bacteriófagos/clasificación , Seudoquiste Pancreático/terapia , Pancreatitis Aguda Necrotizante/terapia , Terapia de Fagos/métodos , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/virología , Anciano , Farmacorresistencia Bacteriana Múltiple , Cálculos Biliares/patología , Humanos , Masculino , Minociclina/uso terapéutico , Seudoquiste Pancreático/microbiología , Pancreatitis Aguda Necrotizante/microbiología
20.
Microbiology (Reading) ; 163(7): 961-969, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28691656

RESUMEN

Small single-stranded nucleic acid phages effect lysis by expressing a single protein, the amurin, lacking muralytic enzymatic activity. Three amurins have been shown to act like 'protein antibiotics' by inhibiting cell-wall biosynthesis. However, the L lysis protein of the canonical ssRNA phage MS2, a 75 aa polypeptide, causes lysis by an unknown mechanism without affecting net peptidoglycan synthesis. To identify residues important for lytic function, randomly mutagenized alleles of L were generated, cloned into an inducible plasmid and the transformants were selected on agar containing the inducer. From a total of 396 clones, 67 were unique single base-pair changes that rendered L non-functional, of which 44 were missense mutants and 23 were nonsense mutants. Most of the non-functional missense alleles that accumulated in levels comparable to the wild-type allele are localized in the C-terminal half of L, clustered in and around an LS dipeptide sequence. The LS motif was used to align L genes from ssRNA phages lacking any sequence similarity to MS2 or to each other. This alignment revealed a conserved domain structure, in terms of charge, hydrophobic character and predicted helical content. None of the missense mutants affected membrane-association of L. Several of the L mutations in the central domains were highly conservative and recessive, suggesting a defect in a heterotypic protein-protein interaction, rather than in direct disruption of the bilayer structure, as had been previously proposed for L.


Asunto(s)
Levivirus/genética , Proteínas Estructurales Virales/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Levivirus/química , Levivirus/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA