Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526206

RESUMEN

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Neumonía Viral/patología , Neumonía Viral/virología , Sistema Respiratorio/virología , Genética Inversa/métodos , Anciano , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Fibrosis Quística/patología , ADN Recombinante , Femenino , Furina/metabolismo , Humanos , Inmunización Pasiva , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Mucosa Nasal/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Sistema Respiratorio/patología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Células Vero , Virulencia , Replicación Viral , Sueroterapia para COVID-19
2.
Nature ; 586(7830): 560-566, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32854108

RESUMEN

Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Interferones/farmacología , Interferones/uso terapéutico , Interleucinas/farmacología , Interleucinas/uso terapéutico , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Envejecimiento/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Interferón-alfa/administración & dosificación , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Interferones/administración & dosificación , Interleucinas/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Modelos Moleculares , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/genética , Neumonía Viral/inmunología , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 119(18): e2118126119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476513

RESUMEN

Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Alphacoronavirus/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Infecciones por Coronavirus/epidemiología , Porcinos
4.
J Infect Dis ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042731

RESUMEN

BACKGROUND: Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS: We measured sapovirus-specific IgG in serum collected, between 2017 and 2020, of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n=112 dyads) using virus-like particles representing three sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS: Sixteen (14.3%) of the 112 children experienced at least one sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined using antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSION: By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.

5.
Proc Natl Acad Sci U S A ; 117(43): 26915-26925, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046644

RESUMEN

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.


Asunto(s)
Alphacoronavirus/fisiología , Infecciones por Coronavirus/virología , Susceptibilidad a Enfermedades/virología , Replicación Viral , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Alphacoronavirus/genética , Alphacoronavirus/crecimiento & desarrollo , Animales , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/transmisión , Expresión Génica , Especificidad del Huésped , Humanos , Proteínas Luminiscentes/genética , Ratones , Células Vero , Replicación Viral/efectos de los fármacos
7.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801868

RESUMEN

Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Células CACO-2 , Quirópteros , Chlorocebus aethiops , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Humanos , Tripsina , Células Vero , Zoonosis/metabolismo , Zoonosis/virología
8.
PLoS Pathog ; 14(2): e1006934, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29481552

RESUMEN

Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome. It is estimated that a third of the world's population is at risk for infection, with an estimated 390 million infections annually. Dengue virus serotype 2 (DENV2) causes severe epidemics, and the leading tetravalent dengue vaccine has lower efficacy against DENV2 compared to the other 3 serotypes. In natural DENV2 infections, strongly neutralizing type-specific antibodies provide protection against subsequent DENV2 infection. While the epitopes of some human DENV2 type-specific antibodies have been mapped, it is not known if these are representative of the polyclonal antibody response. Using structure-guided immunogen design and reverse genetics, we generated a panel of recombinant viruses containing amino acid alterations and epitope transplants between different serotypes. Using this panel of recombinant viruses in binding, competition, and neutralization assays, we have finely mapped the epitopes of three human DENV2 type-specific monoclonal antibodies, finding shared and distinct epitope regions. Additionally, we used these recombinant viruses and polyclonal sera to dissect the epitope-specific responses following primary DENV2 natural infection and monovalent vaccination. Our results demonstrate that antibodies raised following DENV2 infection or vaccination circulate as separate populations that neutralize by occupying domain III and domain I quaternary epitopes. The fraction of neutralizing antibodies directed to different epitopes differs between individuals. The identification of these epitopes could potentially be harnessed to evaluate epitope-specific antibody responses as correlates of protective immunity, potentially improving vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Virus del Dengue/inmunología , Epítopos/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Formación de Anticuerpos , Especificidad de Anticuerpos , Células Cultivadas , Chlorocebus aethiops , Reacciones Cruzadas , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/inmunología , Epítopos/química , Epítopos/inmunología , Humanos , Estructura Cuaternaria de Proteína , Serogrupo , Vacunación , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología
9.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29976657

RESUMEN

With an ongoing threat posed by circulating zoonotic strains, new strategies are required to prepare for the next emergent coronavirus (CoV). Previously, groups had targeted conserved coronavirus proteins as a strategy to generate live attenuated vaccine strains against current and future CoVs. With this in mind, we explored whether manipulation of CoV NSP16, a conserved 2'O methyltransferase (MTase), could provide a broad attenuation platform against future emergent strains. Using the severe acute respiratory syndrome-CoV mouse model, an NSP16 mutant vaccine was evaluated for protection from heterologous challenge, efficacy in the aging host, and potential for reversion to pathogenesis. Despite some success, concerns for virulence in the aged and potential for reversion makes targeting NSP16 alone an untenable approach. However, combining a 2'O MTase mutation with a previously described CoV fidelity mutant produced a vaccine strain capable of protection from heterologous virus challenge, efficacy in aged mice, and no evidence for reversion. Together, the results indicate that targeting the CoV 2'O MTase in parallel with other conserved attenuating mutations may provide a platform strategy for rapidly generating live attenuated coronavirus vaccines.IMPORTANCE Emergent coronaviruses remain a significant threat to global public health and rapid response vaccine platforms are needed to stem future outbreaks. However, failure of many previous CoV vaccine formulations has clearly highlighted the need to test efficacy under different conditions and especially in vulnerable populations such as the aged and immunocompromised. This study illustrates that despite success in young models, the 2'O methyltransferase mutant carries too much risk for pathogenesis and reversion in vulnerable models to be used as a stand-alone vaccine strategy. Importantly, the 2'O methyltransferase mutation can be paired with other attenuating approaches to provide robust protection from heterologous challenge and in vulnerable populations. Coupled with increased safety and reduced pathogenesis, the study highlights the potential for 2'O methyltransferase attenuation as a major component of future live attenuated coronavirus vaccines.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Coronavirus/inmunología , Metiltransferasas/genética , Proteínas no Estructurales Virales/genética , Vacunas Virales/genética , Envejecimiento/inmunología , Animales , Proteínas Arqueales/genética , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Huésped Inmunocomprometido , Metilación , Metiltransferasas/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Células Vero , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/inmunología , Replicación Viral
10.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29540599

RESUMEN

Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Envejecimiento/inmunología , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Chlorocebus aethiops , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/virología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Síndrome Respiratorio Agudo Grave/prevención & control , Síndrome Respiratorio Agudo Grave/virología , Células Vero , Zoonosis/prevención & control , Zoonosis/virología
11.
Proc Natl Acad Sci U S A ; 113(11): 3048-53, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976607

RESUMEN

Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.


Asunto(s)
Quirópteros/virología , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronaviridae/virología , Coronaviridae/patogenicidad , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células Cultivadas , Chlorocebus aethiops , Coronaviridae/genética , Coronaviridae/inmunología , Coronaviridae/aislamiento & purificación , Coronaviridae/fisiología , Infecciones por Coronaviridae/prevención & control , Infecciones por Coronaviridae/transmisión , Infecciones por Coronaviridae/veterinaria , Reacciones Cruzadas , Encefalitis Viral/virología , Células Epiteliales/virología , Especificidad del Huésped , Humanos , Pulmón/citología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Modelos Moleculares , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/fisiología , Mutación Puntual , Conformación Proteica , Receptores Virales/genética , Receptores Virales/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Vero , Replicación Viral , Zoonosis
12.
J Infect Dis ; 217(12): 1932-1941, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29800370

RESUMEN

Background: Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. Methods: We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. Results: Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. Conclusion: Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity.


Asunto(s)
Anticuerpos Antivirales/sangre , Formación de Anticuerpos/inmunología , Dengue Grave/sangre , Dengue Grave/inmunología , Vacunas Atenuadas/inmunología , Adolescente , Adulto , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular Tumoral , Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Método Doble Ciego , Femenino , Humanos , Inmunidad/inmunología , Masculino , Persona de Mediana Edad , Células U937 , Vacunación/métodos , Adulto Joven
13.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28490591

RESUMEN

We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity.IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections.


Asunto(s)
Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/patogenicidad , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Animales Recién Nacidos , Infecciones por Coronavirus/virología , Protección Cruzada , Diarrea/patología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Pase Seriado , Glicoproteína de la Espiga del Coronavirus/inmunología , Análisis de Supervivencia , Porcinos , Estados Unidos , Carga Viral , Esparcimiento de Virus
14.
J Virol ; 90(10): 5090-5097, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26962223

RESUMEN

UNLABELLED: The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE: Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Epítopos , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Reacciones Cruzadas , Dengue/virología , Virus del Dengue/clasificación , Virus del Dengue/genética , Modelos Animales de Enfermedad , Epítopos/genética , Epítopos/inmunología , Ingeniería Genética , Humanos , Ratones , Pruebas de Neutralización , Serogrupo
15.
Proc Natl Acad Sci U S A ; 111(5): 1939-44, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24385585

RESUMEN

The four dengue virus (DENV) serotypes, DENV-1, -2, -3, and -4, are endemic throughout tropical and subtropical regions of the world, with an estimated 390 million acute infections annually. Infection confers long-term protective immunity against the infecting serotype, but secondary infection with a different serotype carries a greater risk of potentially fatal severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. The single most effective measure to control this threat to global health is a tetravalent DENV vaccine. To date, attempts to develop a protective vaccine have progressed slowly, partly because the targets of type-specific human neutralizing antibodies (NAbs), which are critical for long-term protection, remain poorly defined, impeding our understanding of natural immunity and hindering effective vaccine development. Here, we show that the envelope glycoprotein domain I/II hinge of DENV-3 and DENV-4 is the primary target of the long-term type-specific NAb response in humans. Transplantation of a DENV-4 hinge into a recombinant DENV-3 virus showed that the hinge determines the serotype-specific neutralizing potency of primary human and nonhuman primate DENV immune sera and that the hinge region both induces NAbs and is targeted by protective NAbs in rhesus macaques. These results suggest that the success of live dengue vaccines may depend on their ability to stimulate NAbs that target the envelope glycoprotein domain I/II hinge region. More broadly, this study shows that complex conformational antibody epitopes can be transplanted between live viruses, opening up similar possibilities for improving the breadth and specificity of vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/inmunología , Dengue/inmunología , Dengue/virología , Inmunidad/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Células HEK293 , Humanos , Células K562 , Macaca mulatta/inmunología , Macaca mulatta/virología , Datos de Secuencia Molecular , Pruebas de Neutralización , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes , Serotipificación , Especificidad de la Especie , Relación Estructura-Actividad , Factores de Tiempo , Proteínas del Envoltorio Viral/metabolismo , Viremia/inmunología
16.
J Virol ; 89(8): 4696-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653445

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Dipeptidil Peptidasa 4/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Modelos Moleculares , Internalización del Virus , Secuencia de Aminoácidos , Animales , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Técnica del Anticuerpo Fluorescente , Glicosilación , Ratones , Datos de Secuencia Molecular , Especificidad de la Especie
17.
J Virol ; 89(7): 3598-609, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25589656

RESUMEN

UNLABELLED: Mouse hepatitis virus (MHV) isolates JHM.WU and JHM.SD promote severe central nervous system disease. However, while JHM.WU replicates robustly and induces hepatitis, JHM.SD fails to replicate or induce pathology in the liver. These two JHM variants encode homologous proteins with few polymorphisms, and little is known about which viral proteins(s) is responsible for the liver tropism of JHM.WU. We constructed reverse genetic systems for JHM.SD and JHM.WU and, utilizing these full-length cDNA clones, constructed chimeric viruses and mapped the virulence factors involved in liver tropism. Exchanging the spike proteins of the two viruses neither increased replication of JHM.SD in the liver nor attenuated JHM.WU. By further mapping, we found that polymorphisms in JHM.WU structural protein M and nonstructural replicase proteins nsp1 and nsp13 are essential for liver pathogenesis. M protein and nsp13, the helicase, of JHM.WU are required for efficient replication in vitro and in the liver in vivo. The JHM.SD nsp1 protein contains a K194R substitution of Lys194, a residue conserved among all other MHV strains. The K194R polymorphism has no effect on in vitro replication but influences hepatotropism, and introduction of R194K into JHM.SD promotes replication in the liver. Conversely, a K194R substitution in nsp1 of JHM.WU or A59, another hepatotropic strain, significantly attenuates replication of each strain in the liver and increases IFN-ß expression in macrophages in culture. Our data indicate that both structural and nonstructural proteins contribute to MHV liver pathogenesis and support previous reports that nsp1 is a Betacoronavirus virulence factor. IMPORTANCE: The Betacoronavirus genus includes human pathogens, some of which cause severe respiratory disease. The spread of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) into human populations demonstrates the zoonotic potential of emerging coronaviruses, and there are currently no vaccines or effective antivirals for human coronaviruses. Thus, it is important to understand the virus-host interaction that regulates coronavirus pathogenesis. Murine coronavirus infection of mice provides a useful model for the study of coronavirus-host interactions, including the determinants of tropism and virulence. We found that very small changes in coronavirus proteins can profoundly affect tropism and virulence. Furthermore, the hepatotropism of MHV-JHM depends not on the spike protein and viral entry but rather on a combination of the structural protein M and nonstructural replicase-associated proteins nsp1 and nsp13, which are conserved among betacoronaviruses. Understanding virulence determinants will aid in the design of vaccines and antiviral strategies.


Asunto(s)
Hígado/virología , Virus de la Hepatitis Murina/fisiología , Proteínas de la Matriz Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Tropismo Viral , Animales , Línea Celular , Proteínas M de Coronavirus , Cricetinae , Hepatitis Viral Animal/virología , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/genética , Genética Inversa , Proteínas de la Matriz Viral/genética , Proteínas no Estructurales Virales/genética , Replicación Viral
18.
Infection ; 44(4): 551-4, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26825307

RESUMEN

Norovirus gastroenteritis in immunocompromised hosts can result in a serious and prolonged diarrheal illness. We present a case of chronic norovirus disease during rituximab-bendamustine chemotherapy for non-Hodgkin's lymphoma. We show for the first time a correlation between norovirus strain-specific antibody blockade titers and symptom improvement in an immunocompromised host.


Asunto(s)
Infecciones por Caliciviridae , Diarrea , Gastroenteritis , Norovirus , Anticuerpos Antivirales/sangre , Femenino , Humanos , Huésped Inmunocomprometido , Persona de Mediana Edad
19.
Proc Natl Acad Sci U S A ; 110(40): 16157-62, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043791

RESUMEN

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Coronavirus/genética , ADN Complementario/genética , Síndrome Respiratorio Agudo Grave/virología , Northern Blotting , Western Blotting , Células Cultivadas , Cartilla de ADN/genética , Dipeptidil Peptidasa 4/metabolismo , Regulación Viral de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/fisiología , Humanos , Proteínas Luminiscentes , Medio Oriente , Polimorfismo de Longitud del Fragmento de Restricción , Reacción en Cadena en Tiempo Real de la Polimerasa , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Acoplamiento Viral , Replicación Viral/fisiología , Proteína Fluorescente Roja
20.
J Virol ; 88(9): 5195-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574399

RESUMEN

Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.


Asunto(s)
Coronavirus/fisiología , Dipeptidil Peptidasa 4/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Animales , Infecciones por Coronavirus/virología , Análisis Mutacional de ADN , Especificidad del Huésped , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA