Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 58(7): 442-452, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32709676

RESUMEN

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Asunto(s)
Microbiota , Otitis Media/genética , Otitis Media/microbiología , Inhibidor de Serinpeptidasas Tipo Kazal-5/genética , Adulto , Animales , Bacterias/clasificación , Bacterias/genética , Niño , Susceptibilidad a Enfermedades/microbiología , Oído Externo/microbiología , Oído Medio/microbiología , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Boca/microbiología , Nasofaringe/microbiología , Linaje , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
2.
Eye Contact Lens ; 48(1): 27-32, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34608027

RESUMEN

OBJECTIVE: To identify corneal structure differences on quantitative high-frequency ultrasound biomicroscopy (UBM) among subjects with congenital glaucoma compared with controls. METHODS: This prospective case-control study evaluated 180 UBM images from 44 eyes of 30 subjects (18 control and 12 glaucoma, mean age 5.2±8.0 years, range 0.2-25.8 years) enrolled in the Pediatric Anterior Segment Imaging and Innovation Study (PASIIS). ImageJ was used to quantify a comprehensive set of corneal structures according to 21 quantitative parameters. Statistical analysis compared corneal measurements in glaucoma subtypes and age-matched controls with significance testing and mixed effects models. RESULTS: Significant differences between congenital glaucoma cases and controls were identified in 16 of 21 measured parameters including angle-to-angle, central and peripheral corneal thicknesses, scleral integrated pixel density, anterior corneal radius of curvature, and posterior corneal radius of curvature. Eight parameters differed significantly between primary congenital glaucoma and glaucoma following congenital cataract surgery. CONCLUSION: Multiple measurable corneal structural differences exist between congenital glaucoma and control eyes, and between primary and secondary congenital glaucoma, including but not limited to corneal width and thickness. The structural differences can be quantified from UBM image analysis. Further studies are needed to determine whether corneal features associated with glaucoma can be used to diagnose or monitor progression of congenital glaucoma.


Asunto(s)
Glaucoma , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Córnea/diagnóstico por imagen , Glaucoma/diagnóstico , Humanos , Lactante , Microscopía Acústica , Esclerótica , Adulto Joven
3.
Genet Med ; 23(9): 1624-1635, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040189

RESUMEN

PURPOSE: The human chromosome 19q13.11 deletion syndrome is associated with a variable phenotype that includes aplasia cutis congenita (ACC) and ectrodactyly as specific features. UBA2 (ubiquitin-like modifier-activating enzyme 2) lies adjacent to the minimal deletion overlap region. We aimed to define the UBA2-related phenotypic spectrum in humans and zebrafish due to sequence variants and to establish the mechanism of disease. METHODS: Exome sequencing was used to detect UBA2 sequence variants in 16 subjects in 7 unrelated families. uba2 loss of function was modeled in zebrafish. Effects of human missense variants were assessed in zebrafish rescue experiments. RESULTS: Seven human UBA2 loss-of-function and missense sequence variants were detected. UBA2-phenotypes included ACC, ectrodactyly, neurodevelopmental abnormalities, ectodermal, skeletal, craniofacial, cardiac, renal, and genital anomalies. uba2 was expressed in zebrafish eye, brain, and pectoral fins; uba2-null fish showed deficient growth, microcephaly, microphthalmia, mandibular hypoplasia, and abnormal fins. uba2-mRNAs with human missense variants failed to rescue nullizygous zebrafish phenotypes. CONCLUSION: UBA2 variants cause a recognizable syndrome with a wide phenotypic spectrum. Our data suggest that loss of UBA2 function underlies the human UBA2 monogenic disorder and highlights the importance of SUMOylation in the development of affected tissues.


Asunto(s)
Anomalías Múltiples , Displasia Ectodérmica , Deformidades Congénitas de las Extremidades , Animales , Displasia Ectodérmica/genética , Humanos , Deformidades Congénitas de las Extremidades/genética , Enzimas Activadoras de Ubiquitina , Pez Cebra/genética
4.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008666

RESUMEN

Congenital cataracts (CC) are responsible for approximately one-tenth of childhood blindness cases globally. Here, we report an African American family with a recessively inherited form of CC. The proband demonstrated decreased visual acuity and bilateral cataracts, with nuclear and cortical cataracts in the right and left eye, respectively. Exome sequencing revealed a novel homozygous variant (c.563A > G; p.(Asn188Ser)) in GJA3, which was predicted to be pathogenic by structural analysis. Dominantly inherited variants in GJA3 are known to cause numerous types of cataracts in various populations. Our study represents the second case of recessive GJA3 allele, and the first report in African Americans. These results validate GJA3 as a bona fide gene for recessively inherited CC in humans.


Asunto(s)
Catarata/congénito , Catarata/genética , Conexinas/química , Conexinas/genética , Mutación Missense/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Femenino , Homocigoto , Humanos , Dominios Proteicos
5.
Mol Vis ; 25: 144-154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820150

RESUMEN

Purpose: Primary congenital glaucoma (PCG) is a clinically and genetically heterogeneous disease. The present study was undertaken to find the genetic causes of PCG segregating in 36 large consanguineous Pakistani families. Methods: Ophthalmic examination including fundoscopy, or slit-lamp microscopy was performed to clinically characterize the PCG phenotype. Genomic nucleotide sequences of the CYP1B1 and LTBP2 genes were analyzed with either Sanger or whole exome sequencing. In silico prediction programs were used to assess the pathogenicity of identified alleles. ClustalW alignments were performed to determine evolutionary conservation, and three-dimensional (3D) modeling was performed using HOPE and Phyre2 software. Results: Among the known loci, mutations in CYP1B1 and LTBP2 are the common causes of PCG. Therefore, we analyzed the genomic nucleotide sequences of CYP1B1 and LTBP2, and detected probable pathogenic variants cosegregating with PCG in 14 families. These included the three novel (c.542T>A, c.1436A>G, and c.1325delC) and five known (c.868dupC, c.1168C>T, c.1169G>A, c.1209InsTCATGCCACC, and c.1310C>T) variants in CYP1B1. Two of the novel variants are missense substitutions [p.(Leu181Gln), p.(Gln479Arg)], which replaced evolutionary conserved amino acids, and are predicted to be pathogenic by various in silico programs, while the third variant (c.1325delC) is predicted to cause reading frameshift and premature truncation of the protein. A single mutation, p.(Arg390His), causes PCG in six (~43%) of the 14 CYP1B1 mutations harboring families, and thus, is the most common variant in this cohort. Surprisingly, we did not find any LTBP2 pathogenic variants in the families, which further supports the genetic heterogeneity of PCG in the Pakistani population. Conclusions: In conclusion, results of the present study enhance our understanding of the genetic basis of PCG, support the notion of a genetic modifier of CYP1B1, and contribute to the development of genetic testing protocols and genetic counseling for PCG in Pakistani families.


Asunto(s)
Citocromo P-450 CYP1B1/genética , Heterogeneidad Genética , Glaucoma/genética , Mutación , Adolescente , Adulto , Anciano , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Femenino , Expresión Génica , Frecuencia de los Genes , Glaucoma/congénito , Glaucoma/patología , Glaucoma/cirugía , Humanos , Lactante , Proteínas de Unión a TGF-beta Latente/genética , Masculino , Persona de Mediana Edad , Pakistán , Linaje , Alineación de Secuencia , Trabeculectomía/métodos
6.
Front Genet ; 13: 949449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506320

RESUMEN

The macula and fovea comprise a highly sensitive visual detection tissue that is susceptible to common disease processes like age-related macular degeneration (AMD). Our understanding of the molecular determinants of high acuity vision remains unclear, as few model organisms possess a human-like fovea. We explore transcription factor networks and receptor-ligand interactions to elucidate tissue interactions in the macula and peripheral retina and concomitant changes in the underlying retinal pigment epithelium (RPE)/choroid. Poly-A selected, 100 bp paired-end RNA-sequencing (RNA-seq) was performed across the macular/foveal, perimacular, and temporal peripheral regions of the neural retina and RPE/choroid tissues of four adult Rhesus macaque eyes to characterize region- and tissue-specific gene expression. RNA-seq reads were mapped to both the macaque and human genomes for maximum alignment and analyzed for differential expression and Gene Ontology (GO) enrichment. Comparison of the neural retina and RPE/choroid tissues indicated distinct, contiguously changing gene expression profiles from fovea through perimacula to periphery. Top GO enrichment of differentially expressed genes in the RPE/choroid included cell junction organization and epithelial cell development. Expression of transcriptional regulators and various disease-associated genes show distinct location-specific preference and retina-RPE/choroid tissue-tissue interactions. Regional gene expression changes in the macaque retina and RPE/choroid is greater than that found in previously published transcriptome analysis of the human retina and RPE/choroid. Further, conservation of human macula-specific transcription factor profiles and gene expression in macaque tissues suggest a conservation of programs required for retina and RPE/choroid function and disease susceptibility.

7.
Genes (Basel) ; 13(4)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35456423

RESUMEN

Cone photoreceptor dysfunction represents a clinically heterogenous group of disorders characterized by nystagmus, photophobia, reduced central or color vision, and macular dystrophy. Here, we described the molecular findings and clinical manifestations of achromatopsia, a partial or total absence of color vision, co-segregating with three known missense variants of CNGA3 in three large consanguineous Pakistani families. Fundus examination and optical coherence tomography (OCT) imaging revealed myopia, thin retina, retinal pigment epithelial cells loss at fovea/perifovea, and macular atrophy. Combination of Sanger and whole exome sequencing revealed three known homozygous missense variants (c.827A>G, p.(Asn276Ser); c.847C>T, p.(Arg283Trp); c.1279C>T, p.(Arg427Cys)) in CNGA3, the α-subunit of the cyclic nucleotide-gated cation channel in cone photoreceptor cells. All three variants are predicted to replace evolutionary conserved amino acids, and to be pathogenic by specific in silico programs, consistent with the observed altered membrane targeting of CNGA3 in heterologous cells. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of CNGA3-related cone dystrophies.


Asunto(s)
Defectos de la Visión Cromática , Células Fotorreceptoras Retinianas Conos , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Humanos , Mutación , Pakistán
8.
Genes (Basel) ; 12(4)2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800529

RESUMEN

Melanin pigment helps protect our body from broad wavelength solar radiation and skin cancer. Among other pigmentation disorders in humans, albinism is reported to manifest in both syndromic and nonsyndromic forms as well as with varying inheritance patterns. Oculocutaneous albinism (OCA), an autosomal recessive nonsyndromic form of albinism, presents as partial to complete loss of melanin in the skin, hair, and iris. OCA has been known to be caused by pathogenic variants in seven different genes, so far, according to all the currently published population studies. However, the detection rate of alleles causing OCA varies from 50% to 90%. One of the significant challenges of uncovering the pathological variant underlying disease etiology is inter- and intra-familial locus heterogeneity. This problem is especially pertinent in highly inbred populations. As examples of such familial locus heterogeneity, we present nine consanguineous Pakistani families with segregating OCA due to variants in one or two different known albinism-associated genes. All of the identified variants are predicted to be pathogenic, which was corroborated by several in silico algorithms and association with diverse clinical phenotypes. We report an individual affected with OCA carries heterozygous, likely pathogenic variants in TYR and OCA2, raising the question of a possible digenic inheritance. Altogether, our study highlights the significance of exome sequencing for the complete genetic diagnosis of inbred families and provides the ramifications of potential genetic interaction and digenic inheritance of variants in the TYR and OCA2 genes.


Asunto(s)
Albinismo Oculocutáneo/genética , Proteínas de Transporte de Membrana/genética , Monofenol Monooxigenasa/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Niño , Preescolar , Consanguinidad , Femenino , Estudios de Asociación Genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Masculino , Proteínas de Transporte de Membrana/química , Persona de Mediana Edad , Modelos Moleculares , Linaje , Secuenciación del Exoma , Adulto Joven
9.
Invest Ophthalmol Vis Sci ; 61(12): 1, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001157

RESUMEN

Purpose: Genetic variation in PDE6C is associated with achromatopsia and cone dystrophy, with only a few reports of cone-rod dystrophy in the literature. We describe two pediatric and two adult patients with PDE6C related cone and cone-rod dystrophy and the first longitudinal data of a pediatric patient with PDE6C-related cone dystrophy. Methods: This cohort of four patients underwent comprehensive ophthalmologic evaluation at the National Eye Institute's Ophthalmic Genetics clinic, including visual field testing, retinal imaging and electroretinogram (ERG). Next-generation sequencing-based genetic testing was performed and subsequent analysis of the variants was done through three-dimensional protein models generated by Phyre2 and Chimera. Results: All cases shared decreased best-corrected visual acuity and poor color discrimination. Three of the four patients had a cone-rod dystrophy, presenting with an ERG showing decreased amplitude on both photopic and scotopic waveforms and a mild to moderately constricted visual field. One of the children was diagnosed with cone dystrophy, having a preserved peripheral field. The children had none to minor structural retinal changes, whereas the adults had clear macular dystrophy. Conclusions: PDE6C-related cone-rod dystrophy consists of a severe phenotype characterized by early-onset nystagmus, decreased best-corrected visual acuity, poor color discrimination, progressive constriction of the visual field, and night blindness. Our work contributes with valuable information toward understanding the visual prognosis and allelic heterogeneity of PDE6C-related cone and cone-rod dystrophy.


Asunto(s)
Defectos de la Visión Cromática/genética , Distrofia del Cono/genética , Distrofias de Conos y Bastones/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Proteínas del Ojo/genética , Mutación , Células Fotorreceptoras Retinianas Conos/patología , Niño , Defectos de la Visión Cromática/diagnóstico por imagen , Defectos de la Visión Cromática/fisiopatología , Distrofia del Cono/diagnóstico por imagen , Distrofia del Cono/fisiopatología , Distrofias de Conos y Bastones/diagnóstico por imagen , Distrofias de Conos y Bastones/fisiopatología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Trastornos de la Visión/genética , Trastornos de la Visión/fisiopatología , Agudeza Visual/fisiología , Pruebas del Campo Visual , Campos Visuales/fisiología
10.
Pigment Cell Melanoma Res ; 33(4): 556-565, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32274888

RESUMEN

Skin pigmentation is a highly heterogeneous trait with diverse consequences worldwide. SLC24A5, encoding a potent K+ -dependent Na+ /Ca2+ exchanger, is among the known color-coding genes that participate in melanogenesis by maintaining pH in melanosomes. Deficient SLC24A5 activity results in oculocutaneous albinism (OCA) type 6 in humans. In this study, by utilizing a exome sequencing (ES) approach, we identified two new variants [p. (Gly110Arg) and p. (IIe189Ilefs*1)] of SLC24A5 cosegregating with the OCA phenotype, including nystagmus, strabismus, foveal hypoplasia, albinotic fundus, and vision impairment, in three large consanguineous Pakistani families. Both of these variants failed to rescue the pigmentation in zebrafish slc24a5 morphants, confirming the pathogenic effects of the variants. We also phenotypically characterized a commercially available zebrafish mutant line (slc24a5ko ) that harbors a nonsense (p.Tyr208*) allele of slc24a5. Similar to morphants, homozygous slc24a5ko mutants had significantly reduced melanin content and pigmentation. Next, we used these slc24a5ko zebrafish mutants to test the efficacy of nitisinone, a compound known to increase ocular and fur pigmentation in OCA1 (TYR) mutant mice. Treatment of slc24a5ko mutant zebrafish embryos with varying doses of nitisinone did not improve melanin production and pigmentation, suggesting that treatment with nitisinone is unlikely to be therapeutic in OCA6 patients.


Asunto(s)
Albinismo Oculocutáneo/genética , Antiportadores/genética , Ciclohexanonas/farmacología , Variación Genética , Nitrobenzoatos/farmacología , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Adolescente , Adulto , Anciano , Animales , Niño , Segregación Cromosómica/genética , Modelos Animales de Enfermedad , Familia , Femenino , Fondo de Ojo , Humanos , Larva/efectos de los fármacos , Masculino , Persona de Mediana Edad , Morfolinos/farmacología , Pakistán , Linaje , Fenotipo , Pigmentación de la Piel/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven
11.
Genes (Basel) ; 9(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380740

RESUMEN

Juvenile open angle glaucoma (JOAG), which is an uncommon form of primary open angle glaucoma, is a clinically and genetically heterogeneous disorder. We report on a family with a recessively inherited form of JOAG. The proband has a superior and an inferior never fiber layer thinning in both the eyes and the nasal visual field (VF) defects in the left eye, which are clinical findings consistent with glaucomatous optic neuropathy. Whole exome sequencing revealed two novel compound heterozygous variants [c.2966C>G, p.(Pro989Arg); c.5235T>G, p.(Asn1745Lys)] in latent transforming growth factor-beta-binding protein 2 (LTBP2) segregating with the phenotype. Both these variants are predicted to replace evolutionary conserved amino acids, have a pathogenic effect on the encode protein, and have very low frequencies in the control databases. Mutations in LTBP2 are known to cause the Weill-Marchesani syndrome and a Weill-Marchesani-like syndrome, which include glaucoma in their clinical presentation. However, to our knowledge, this is the first published case of a JOAG subject associated with recessively inherited variants of LTPB2 and, thus, expands the repertoire of the known genetic causes of JOAG and the phenotypic spectrum of LTBP2 alleles.

12.
Sci Rep ; 7: 44185, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28266639

RESUMEN

Nonsyndromic oculocutaneous Albinism (nsOCA) is clinically characterized by the loss of pigmentation in the skin, hair, and iris. OCA is amongst the most common causes of vision impairment in children. To date, pathogenic variants in six genes have been identified in individuals with nsOCA. Here, we determined the identities, frequencies, and clinical consequences of OCA alleles in 94 previously unreported Pakistani families. Combination of Sanger and Exome sequencing revealed 38 alleles, including 22 novel variants, segregating with nsOCA phenotype in 80 families. Variants of TYR and OCA2 genes were the most common cause of nsOCA, occurring in 43 and 30 families, respectively. Twenty-two novel variants include nine missense, four splice site, two non-sense, one insertion and six gross deletions. In vitro studies revealed retention of OCA proteins harboring novel missense alleles in the endoplasmic reticulum (ER) of transfected cells. Exon-trapping assays with constructs containing splice site alleles revealed errors in splicing. As eight alleles account for approximately 56% (95% CI: 46.52-65.24%) of nsOCA cases, primarily enrolled from Punjab province of Pakistan, hierarchical strategies for variant detection would be feasible and cost-efficient genetic tests for OCA in families with similar origin. Thus, we developed Tetra-primer ARMS assays for rapid, reliable, reproducible and economical screening of most of these common alleles.


Asunto(s)
Albinismo Oculocutáneo/epidemiología , Albinismo Oculocutáneo/genética , Alelos , Frecuencia de los Genes , Proteínas de Transporte de Membrana/genética , Mutación Missense , Albinismo Oculocutáneo/patología , Femenino , Humanos , Masculino , Pakistán/epidemiología
13.
Pigment Cell Melanoma Res ; 28(6): 730-5, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26197705

RESUMEN

Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor of the melanocyte's plasma membrane, is a major determinant of skin pigmentation and phototype. Upon activation by α-melanocyte stimulating hormone, MC1R triggers the cAMP cascade to stimulate eumelanogenesis. We used whole-exome sequencing to identify causative alleles in Pakistani families with skin and hair hypopigmentation. Six MC1R mutations segregated with the phenotype in seven families, including a p.Val174del in-frame deletion and a p.Tyr298* nonsense mutation, that were analyzed for function in heterologous HEK293 cells. p.Tyr298* MC1R showed no agonist-induced signaling to the cAMP or ERK pathways, nor detectable agonist binding. Conversely, signaling was comparable for p.Val174del and wild-type in HEK cells overexpressing the proteins, but binding analysis suggested impaired cell surface expression. Flow cytometry and confocal imaging studies revealed reduced plasma membrane expression of p.Val174del and p.Tyr298*. Therefore, p.Tyr298* was a total loss-of-function (LOF) allele, while p.Val174del displayed a partial LOF attribute.


Asunto(s)
Alelos , Mutación/genética , Receptor de Melanocortina Tipo 1/genética , Familia , Femenino , Humanos , Hipopigmentación/genética , Masculino , Pakistán , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA