Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(11): 2183-2196, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37732483

RESUMEN

BACKGROUND: VWF (von Willebrand factor) is an endothelial-specific procoagulant protein with a major role in thrombosis. Aging is associated with increased circulating levels of VWF, which presents a risk factor for thrombus formation. METHODS: Circulating plasma, cellular protein, and mRNA levels of VWF were determined and compared in young and aged mice. Major organs were subjected to immunofluorescence analyses to determine the vascular pattern of VWF expression and the presence of platelet aggregates. An in vitro model of aging, using extended culture time of endothelial cells, was used to explore the mechanism of age-associated increased VWF levels. RESULTS: Increased circulating plasma levels of VWF with elevated levels of larger multimers, indicative of VWF functional activity, were observed in aged mice. VWF mRNA and cellular protein levels were significantly increased in the brains, lungs, and livers but not in the kidneys and hearts of aged mice. Higher proportion of small vessels in brains, lungs, and livers of aged mice exhibited VWF expression compared with young, and this was concomitant with increased platelet aggregate formation. Prolonged culture of endothelial cells resulted in increased cell senescence that correlated with increased VWF expression; VWF expression was specifically detected in senescent cultured endothelial cells and abolished in response to p53 knockdown. A significantly higher proportion of VWF expressing endothelial cells in vivo exhibited senescence markers SA-ß-Gal (senescence-associated ß-galactosidase) and p53 in aged mouse brains compared with that of the young. CONCLUSIONS: Aging elicits a heterogenic response in endothelial cells with regard to VWF expression, leading to organ-specific increase in VWF levels and alterations in vascular tree pattern of expression. This is concomitant with increased platelet aggregate formation. The age-associated increase in VWF expression may be modulated through the process of cell senescence, and p53 transcription factor contributes to its regulation.


Asunto(s)
Trombosis , Enfermedades de von Willebrand , Ratones , Animales , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Células Endoteliales/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Trombosis/genética , Trombosis/metabolismo , Envejecimiento/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA