Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 30(6): 680-694, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38429100

RESUMEN

Genome-derived microRNAs (miRNAs or miRs) govern posttranscriptional gene regulation and play important roles in various cellular processes and disease progression. While chemo-engineered miRNA mimics or biosimilars made in vitro are widely available and used, miRNA agents produced in vivo are emerging to closely recapitulate natural miRNA species for research. Our recent work has demonstrated the success of high-yield, in vivo production of recombinant miRNAs by using human tRNA (htRNA) fused precursor miRNA (pre-miR) carriers. In this study, we aim to compare the production of bioengineered RNA (BioRNA) molecules with glycyl versus leucyl htRNA fused hsa-pre-miR-34a carriers, namely, BioRNAGly and BioRNALeu, respectively, and perform the initial functional assessment. We designed, cloned, overexpressed, and purified a total of 48 new BioRNA/miRNAs, and overall expression levels, final yields, and purities were revealed to be comparable between BioRNAGly and BioRNALeu molecules. Meanwhile, the two versions of BioRNA/miRNAs showed similar activities to inhibit non-small cell lung cancer cell viability. Interestingly, functional analyses using model BioRNA/miR-7-5p demonstrated that BioRNAGly/miR-7-5p exhibited greater efficiency to regulate a known target gene expression (EGFR) than BioRNALeu/miR-7-5p, consistent with miR-7-5p levels released in cells. Moreover, BioRNAGly/miR-7-5p showed comparable or slightly greater activities to modulate MRP1 and VDAC1 expression, compared with miRCURY LNA miR-7-5p mimic. Computational modeling illustrated overall comparable 3D structures for exemplary BioRNA/miRNAs with noticeable differences in htRNA species and payload miRNAs. These findings support the utility of hybrid htRNA/hsa-pre-miR-34a as reliable carriers for RNA molecular bioengineering, and the resultant BioRNAs serve as functional biologic RNAs for research and development.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Bioingeniería/métodos , ARN de Transferencia/genética , Línea Celular Tumoral
2.
Mol Pharmacol ; 106(1): 13-20, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38719476

RESUMEN

The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro), lumasiran (Oxlumo), inclisiran (Leqvio), vutrisiran (Amvuttra), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action. SIGNIFICANCE STATEMENT: The common and unique chemistry and molecular pharmacology of six FDA-approved siRNA therapeutics are summarized, in which nedosiran is newly approved. We point out rather a surprisingly mechanistic action as miRNAs for five siRNA therapeutics and discuss the differences and similarities between siRNAs and miRNAs that supports using a general and unified term "RNAi" therapeutics to align with current drug nomenclature criteria in pharmacology based on mechanism of action and embraces broader forms and growing number of novel RNAi therapeutics.


Asunto(s)
ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/genética , Tratamiento con ARN de Interferencia/métodos , Interferencia de ARN , Animales , MicroARNs/genética
3.
J Pharmacol Exp Ther ; 384(1): 133-154, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680378

RESUMEN

RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.


Asunto(s)
Productos Biológicos , MicroARNs , Interferencia de ARN , Tratamiento con ARN de Interferencia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , MicroARNs/genética , MicroARNs/uso terapéutico , MicroARNs/metabolismo , Bioingeniería
4.
Drug Metab Dispos ; 51(6): 685-699, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948592

RESUMEN

The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.


Asunto(s)
ADN Recombinante , MicroARNs , MicroARNs/genética , ARN Interferente Pequeño/genética , Tasa de Depuración Metabólica , Tecnología , Proteínas Recombinantes , Farmacocinética
5.
Pharmacol Rev ; 72(4): 862-898, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929000

RESUMEN

RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.


Asunto(s)
ARN/efectos de los fármacos , ARN/farmacología , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/uso terapéutico , Betacoronavirus , COVID-19 , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infecciones por Coronavirus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Desarrollo de Medicamentos/organización & administración , Descubrimiento de Drogas , Humanos , MicroARNs/farmacología , MicroARNs/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , ARN/efectos adversos , ARN sin Sentido/farmacología , ARN sin Sentido/uso terapéutico , ARN Guía de Kinetoplastida/farmacología , ARN Guía de Kinetoplastida/uso terapéutico , ARN Mensajero/efectos de los fármacos , ARN Mensajero/farmacología , ARN Ribosómico/efectos de los fármacos , ARN Ribosómico/farmacología , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , ARN Viral/efectos de los fármacos , Ribonucleasas/metabolismo , Riboswitch/efectos de los fármacos , SARS-CoV-2
6.
Pharmacol Res ; 182: 106324, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750301

RESUMEN

The nuclear receptor RORγ is a major driver of autoimmune diseases and certain types of cancer due to its aberrant function in T helper 17 (Th17) cell differentiation and tumor cholesterol metabolism, respectively. Compound screening using the classic receptor-coactivator interaction perturbation scheme led to identification of many small-molecule modulators of RORγ(t). We report here that inverse agonists/antagonists of RORγ such as VTP-43742 derivative VTP-23 and TAK828F, which can potently inhibit the inflammatory gene program in Th17 cells, unexpectedly lack high potency in inhibiting the growth of TNBC tumor cells. In contrast, antagonists such as XY018 and GSK805 that strongly suppress tumor cell growth and survival display only modest activities in reducing Th17-related cytokine expression. Unexpectedly, we found that VTP-23 significantly induces the cholesterol biosynthesis program in TNBC cells. Our further mechanistic analyses revealed that VTP-23 enhances the local chromatin accessibility, H3K27ac mark and the cholesterol master regulator SREBP2 recruitment at the RORγ binding sites, whereas XY018 exerts the opposite activities. Yet, they display similar inhibitory effects on circadian rhythm program. Similar distinctions and contrasting activities between TAK828F and SR2211 in their effects on local chromatin structure at Il17 genes were also observed. Together, our study shows for the first-time that structurally distinct RORγ antagonists possess different or even contrasting activities in tissue/cell-specific manner. Our findings also highlight that the activities at natural chromatin are key determinants of RORγ modulators' tissue selectivity.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Colesterol/metabolismo , Cromatina/metabolismo , Humanos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Células Th17 , Neoplasias de la Mama Triple Negativas/metabolismo
7.
J Pharmacol Exp Ther ; 377(3): 305-315, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33712506

RESUMEN

Understanding pharmacokinetic (PK)-pharmacodynamic (PD) relationships is essential in translational research. Existing PK-PD models for combination therapy lack consideration of quantitative contributions from individual drugs, whereas interaction factor is always assigned arbitrarily to one drug and overstretched for the determination of in vivo pharmacologic synergism. Herein, we report a novel generic PK-PD model for combination therapy by considering apparent contributions from individual drugs coadministered. Doxorubicin (Dox) and sorafenib (Sor) were used as model drugs whose PK data were obtained in mice and fit to two-compartment model. Xenograft tumor growth was biphasic in mice, and PD responses were described by three-compartment transit models. This PK-PD model revealed that Sor (contribution factor = 1.62) had much greater influence on overall tumor-growth inhibition than coadministered Dox (contribution factor = 0.644), which explains the mysterious clinical findings on remarkable benefits for patients with cancer when adding Sor to Dox treatment, whereas there were none when adding Dox to Sor therapy. Furthermore, the combination index method was integrated into this predictive PK-PD model for critical determination of in vivo pharmacologic synergism that cannot be correctly defined by the interaction factor in conventional models. In addition, this new PK-PD model was able to identify optimal dosage combination (e.g., doubling experimental Sor dose and reducing Dox dose by 50%) toward much greater degree of tumor-growth inhibition (>90%), which was consistent with stronger synergy (combination index = 0.298). These findings demonstrated the utilities of this new PK-PD model and reiterated the use of valid method for the assessment of in vivo synergism. SIGNIFICANCE STATEMENT: A novel pharmacokinetic (PK)-pharmacodynamic (PD) model was developed for the assessment of combination treatment by considering contributions from individual drugs, and combination index method was incorporated to critically define in vivo synergism. A greater contribution from sorafenib to tumor-growth inhibition than that of coadministered doxorubicin was identified, offering explanation for previously inexplicable clinical observations. This PK-PD model and strategy shall have broad applications to translational research on identifying optimal dosage combinations with stronger synergy toward improved therapeutic outcomes.


Asunto(s)
Doxorrubicina , Terapia Combinada , Interacciones Farmacológicas
8.
Mol Pharmacol ; 98(6): 686-694, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33051382

RESUMEN

Cancer cells are dysregulated and addicted to continuous supply and metabolism of nutritional glucose and amino acids (e.g., arginine) to drive the synthesis of critical macromolecules for uncontrolled growth. Recent studies have revealed that genome-derived microRNA (miRNA or miR)-1291-5p (miR-1291-5p or miR-1291) may modulate the expression of argininosuccinate synthase (ASS1) and glucose transporter protein type 1 (GLUT1). We also developed a novel approach to produce recombinant miR-1291 agents for research, which are distinguished from conventional chemo-engineered miRNA mimics. Herein, we firstly demonstrated that bioengineered miR-1291 agent was selectively processed to high levels of target miR-1291-5p in human pancreatic cancer (PC) cells. After the suppression of ASS1 protein levels, miR-1291 perturbed arginine homeostasis and preferably sensitized ASS1-abundant L3.3 cells to arginine deprivation therapy. In addition, miR-1291 treatment reduced the protein levels of GLUT1 in both AsPC-1 and PANC-1 cells, leading to a lower glucose uptake (deceased > 40%) and glycolysis capacity (reduced approximately 50%). As a result, miR-1291 largely improved cisplatin efficacy in the inhibition of PC cell viability. Our results demonstrated that miR-1291 was effective to sensitize PC cells to arginine deprivation treatment and chemotherapy through targeting ASS1- and GLUT1-mediated arginolysis and glycolysis, respectively, which may provide insights into understanding miRNA signaling underlying cancer cell metabolism and development of new strategies for the treatment of lethal PC. SIGNIFICANCE STATEMENT: Many anticancer drugs in clinical use and under investigation exert pharmacological effects or improve efficacy of coadministered medications by targeting cancer cell metabolism. Using new recombinant miR-1291 agent, we revealed that miR-1291 acts as a metabolism modulator in pancreatic carcinoma cells through the regulation of argininosuccinate synthase- and glucose transporter protein type 1-mediated arginolysis and glycolysis. Consequently, miR-1291 effectively enhanced the efficacy of arginine deprivation (pegylated arginine deiminase) and chemotherapy (cisplatin), offering new insights into development of rational combination therapies.


Asunto(s)
Antineoplásicos/farmacología , MicroARNs/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , ARN/farmacología , Antineoplásicos/uso terapéutico , Arginina/metabolismo , Argininosuccinato Sintasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , MicroARNs/uso terapéutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN/uso terapéutico , Neoplasias Pancreáticas
9.
Drug Metab Dispos ; 48(12): 1257-1263, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33051247

RESUMEN

Pharmacological interventions for hepatocellular carcinoma (HCC) are hindered by complex factors, and rational combination therapy may be developed to improve therapeutic outcomes. Very recently, we have identified a bioengineered microRNA let-7c-5p (or let-7c) agent as an effective inhibitor against HCC in vitro and in vivo. In this study, we sought to identify small-molecule drugs that may synergistically act with let-7c against HCC. Interestingly, we found that let-7c exhibited a strong synergism with 5-fluorouracil (5-FU) in the inhibition of HCC cell viability as manifested by average combination indices of 0.3 and 0.5 in Hep3B and Huh7 cells, respectively. By contrast, coadministration of let-7c with doxorubicin or sorafenib inhibited HCC cell viability with, rather surprisingly, no or minimal synergy. Further studies showed that protein levels of multidrug resistance-associated protein (MRP) ATP-binding cassette subfamily C member 5 (MRP5/ABCC5), a 5-FU efflux transporter, were reduced around 50% by let-7c in HCC cells. This led to a greater degree of intracellular accumulation of 5-FU in Huh7 cells as well as the second messenger cyclic adenosine monophosphate, an endogenous substrate of MRP5. Since 5-FU is an irreversible inhibitor of thymidylate synthetase (TS), we investigated the interactions of let-7c with 5-FU at pharmacodynamic level. Interestingly, our data revealed that let-7c significantly reduced TS protein levels in Huh7 cells, which was associated with the suppression of upstream transcriptional factors as well as other regulatory factors. Collectively, these results indicate that let-7c interacts with 5-FU at both pharmacokinetic and pharmacodynamic levels, and these findings shall offer insight into molecular mechanisms of synergistic drug combinations. SIGNIFICANCE STATEMENT: Combination therapy is a common strategy that generally involves pharmacodynamic interactions. After identifying a strong synergism between let-7c-5p and 5-fluorouracil (5-FU) against hepatocellular carcinoma cell viability, we reveal the involvement of both pharmacokinetic and pharmacodynamic mechanisms. In particular, let-7c enhances 5-FU exposure (via suppressing ABCC5/MRP5 expression) and cotargets thymidylate synthase with 5-FU (let-7c reduces protein expression, whereas 5-FU irreversibly inactivates enzyme). These findings provide insight into developing rational combination therapies based on pharmacological mechanisms.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Carcinoma Hepatocelular/tratamiento farmacológico , Fluorouracilo/farmacocinética , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Fluorouracilo/administración & dosificación , Regulación Neoplásica de la Expresión Génica , Ingeniería Genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/administración & dosificación , MicroARNs/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
10.
Appl Microbiol Biotechnol ; 104(5): 1927-1937, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31953559

RESUMEN

Genome-derived noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), play an essential role in the control of target gene expression underlying various cellular processes, and dysregulation of ncRNAs is involved in the pathogenesis and progression of various diseases in virtually all species including humans. Understanding ncRNA biology has opened new avenues to develop novel RNA-based therapeutics. Presently, ncRNA research and drug development is dominated by the use of ncRNA mimics that are synthesized chemically in vitro and supplemented with extensive and various types of artificial modifications and thus may not necessarily recapitulate the properties of natural RNAs generated and folded in living cells in vivo. Therefore, there are growing interests in developing novel technologies for in vivo production of RNA molecules. The two most recent major breakthroughs in achieving an efficient, large-scale, and cost-effective fermentation production of recombinant or bioengineered RNAs (e.g., tens of milligrams from 1 L of bacterial culture) are (1) using stable RNA carriers and (2) direct overexpression in RNase III-deficient bacteria, while other approaches offer a low yield (e.g., nano- to microgram scales per liter). In this article, we highlight these novel microbial fermentation-based technologies that have shifted the paradigm to the production of true biological ncRNA molecules for research and development.


Asunto(s)
Bacterias/metabolismo , Bacterias/genética , Bioingeniería , Fermentación , ARN no Traducido/biosíntesis , ARN no Traducido/genética
11.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899231

RESUMEN

The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments. The HMOX1 pathway can inhibit platelet aggregation, and can have anti-thrombotic and anti-inflammatory properties, amongst others, all of which are critical medical conditions observed in COVID-19 patients. Here, we review the potential of modulating the HMOX1-ORF3a nexus to regulate the innate immune response for therapeutic benefits in COVID-19 patients. We also review other potential treatment strategies and suggest novel synthetic and natural compounds that may have the potential for future development in clinic.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Hemo-Oxigenasa 1/metabolismo , Neumonía Viral/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Antivirales/uso terapéutico , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Hemo-Oxigenasa 1/genética , Humanos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Unión Proteica , Proteínas Viroporinas
12.
Appl Microbiol Biotechnol ; 103(15): 6107-6117, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31187211

RESUMEN

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs), regulate target gene expression and can be used as tools for understanding biological processes and identifying new therapeutic targets. Currently, ncRNA molecules for research and therapeutic use are limited to ncRNA mimics made by chemical synthesis. We have recently established a high-yield and cost-effective method of producing bioengineered or biologic ncRNA agents (BERAs) through bacterial fermentation, which is based on a stable tRNA/pre-miR-34a carrier (~ 180 nt) that accommodates target small RNAs. Nevertheless, it remains a challenge to heterogeneously express longer ncRNAs (e.g., > 260 nt), and it is unknown if single BERA may carry multiple small RNAs. To address this issue, we hypothesized that an additional human pre-miR-34a could be attached to the tRNA/pre-miR-34a scaffold to offer a new tRNA/pre-miR-34a/pre-miR-34a carrier (~ 296 nt) for the accommodation of multiple small RNAs. We thus designed ten different combinatorial BERAs (CO-BERAs) that include different combinations of miRNAs, siRNAs, and antagomirs. Our data showed that all target CO-BERAs were successfully expressed in Escherichia coli at high levels, greater than 40% in total bacterial RNAs. Furthermore, recombinant CO-BERAs were purified to a high degree of homogeneity by fast protein liquid chromatography methods. In addition, CO-BERAs exhibited strong anti-proliferative activities against a variety of human non-small cell lung cancer cell lines. These results support the production of long ncRNA molecules carrying different warhead small RNAs for multi-targeting which may open avenues for developing new biologic RNAs as experimental, diagnostic, and therapeutic tools.


Asunto(s)
Antagomirs/biosíntesis , Antagomirs/genética , Bioingeniería/métodos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Cromatografía Liquida , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , ARN Largo no Codificante/aislamiento & purificación
13.
J Pharmacol Exp Ther ; 365(3): 494-506, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29602831

RESUMEN

Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics.


Asunto(s)
Perfilación de la Expresión Génica , Ingeniería Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , MicroARNs/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Neoplasias Pulmonares/patología , Ratones
14.
Drug Metab Dispos ; 46(1): 2-10, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061583

RESUMEN

The nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications. Herein, we report successful high-level expression of recombinant siRNA against NRF2 in Escherichia coli using our newly established noncoding RNA bioengineering technology, which was purified to >99% homogeneity using an anion-exchange fast protein liquid chromatography method. Bioengineered NRF2-siRNA was able to significantly knock down NRF2 mRNA and protein levels in human OS 143B and MG63 cells, and subsequently suppressed the expression of NRF2-regulated oxidative enzymes [heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1] and elevated intracellular levels of reactive oxygen species. In addition, recombinant NRF2-siRNA was effective to sensitize both 143B and MG63 cells to doxorubicin, cisplatin, and sorafenib, which was associated with significant downregulation of NRF2-targeted ATP-binding cassette (ABC) efflux transporters (ABCC3, ABCC4, and ABCG2). These findings support that targeting NRF2 signaling pathways may improve the sensitivity of cancer cells to chemotherapy, and bioengineered siRNA molecules should be added to current tools for related research.


Asunto(s)
Antineoplásicos/farmacología , Factor 2 Relacionado con NF-E2/genética , Osteosarcoma/tratamiento farmacológico , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/uso terapéutico , Bioingeniería/métodos , Línea Celular Tumoral , Regulación hacia Abajo , Resistencia a Antineoplásicos , Técnicas de Silenciamiento del Gen/métodos , Hemo-Oxigenasa 1/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Osteosarcoma/patología , Estrés Oxidativo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
15.
Carcinogenesis ; 38(4): 474-483, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334197

RESUMEN

Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C-dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Proliferación Celular/genética , Senescencia Celular/genética , PPAR alfa/genética , Línea Celular , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Metabolismo de los Lípidos/genética , Mitocondrias/genética , Neoplasias/genética , Oxidación-Reducción
16.
Drug Metab Dispos ; 45(5): 512-522, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254952

RESUMEN

MicroRNAs (miRNAs or miRs), including miR-34a, have been shown to regulate nuclear receptor, drug-metabolizing enzyme, and transporter gene expression in various cell model systems. However, to what degree miRNAs affect pharmacokinetics (PK) at the systemic level remains unknown. In addition, miR-34a replacement therapy represents a new cancer treatment strategy, although it is unknown whether miR-34a therapeutic agents could elicit any drug-drug interactions. To address this question, we refined a practical single-mouse PK approach and investigated the effects of a bioengineered miR-34a agent on the PK of several cytochrome P450 probe drugs (midazolam, dextromethorphan, phenacetin, diclofenac, and chlorzoxazone) administered as a cocktail. This approach involves manual serial blood microsampling from a single mouse and requires a sensitive liquid chromatography-tandem mass spectrometry assay, which was able to illustrate the sharp changes in midazolam PK by ketoconazole and pregnenolone 16α-carbonitrile as well as phenacetin PK by α-naphthoflavone and 3-methylcholanthrene. Surprisingly, 3-methylcholanthrene also decreased systemic exposure to midazolam, whereas both pregnenolone 16α-carbonitrile and 3-methylcholanthrene largely reduced the exposure to dextromethorphan, diclofenac, and chlorzoxazone. Finally, the biologic miR-34a agent had no significant effects on the PK of cocktail drugs but caused a marginal (45%-48%) increase in systemic exposure to midazolam, phenacetin, and dextromethorphan in mice. In vitro validation of these data suggested that miR-34a slightly attenuated intrinsic clearance of dextromethorphan. These findings from single-mouse PK and corresponding mouse liver microsome models suggest that miR-34a might have minor or no effects on the PK of coadministered cytochrome P450-metabolized drugs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , MicroARNs/farmacología , Animales , Clorzoxazona/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Dextrometorfano/farmacocinética , Diclofenaco/farmacocinética , Interacciones Farmacológicas , Masculino , Ratones , Midazolam/farmacocinética , Farmacocinética , Fenacetina/farmacocinética
17.
Nucleic Acids Res ; 43(7): 3857-69, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25800741

RESUMEN

RNA research and therapy relies primarily on synthetic RNAs. We employed recombinant RNA technology toward large-scale production of pre-miRNA agents in bacteria, but found the majority of target RNAs were not or negligibly expressed. We thus developed a novel strategy to achieve consistent high-yield biosynthesis of chimeric RNAs carrying various small RNAs (e.g. miRNAs, siRNAs and RNA aptamers), which was based upon an optimal noncoding RNA scaffold (OnRS) derived from tRNA fusion pre-miR-34a (tRNA/mir-34a). Multi-milligrams of chimeric RNAs (e.g. OnRS/miR-124, OnRS/GFP-siRNA, OnRS/Neg (scrambled RNA) and OnRS/MGA (malachite green aptamer)) were readily obtained from 1 l bacterial culture. Deep sequencing analyses revealed that mature miR-124 and target GFP-siRNA were selectively released from chimeric RNAs in human cells. Consequently, OnRS/miR-124 was active in suppressing miR-124 target gene expression and controlling cellular processes, and OnRS/GFP-siRNA was effective in knocking down GFP mRNA levels and fluorescent intensity in ES-2/GFP cells and GFP-transgenic mice. Furthermore, the OnRS/MGA sensor offered a specific strong fluorescence upon binding MG, which was utilized as label-free substrate to accurately determine serum RNase activities in pancreatic cancer patients. These results demonstrate that OnRS-based bioengineering is a common, robust and versatile strategy to assemble various types of small RNAs for broad applications.


Asunto(s)
ARN/biosíntesis , Animales , Secuencia de Bases , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Conformación de Ácido Nucleico , ARN/genética , ARN/fisiología , Recombinación Genética
18.
Biopharm Drug Dispos ; 38(5): 326-339, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28102538

RESUMEN

The liver and kidney functions of recipients of liver transplantation (LT) surgery with heart beating (HBD, n = 13) or living donors (LD, n = 9) with different cold ischemia times were examined during the neohepatic phase for the elimination of rocuronium bromide (ROC, cleared by liver and kidney) and tranexamic acid (TXA, cleared by kidney). Solid phase micro-extraction and LC-MS/MS was applied to determine the plasma concentrations of ROC and TXA, and creatinine was determined by standard laboratory methods. Metabolomics and the relative expressions of miR-122, miR-148a and γ-glutamyltranspeptidase (GGT), liver injury biomarkers, were also measured. The ROC clearance for HBD was significantly lower than that for LD (0.147 ± 0.052 vs. 0.265 ± 0.148 ml·min-1 ·g-1 liver) after intravenous injection (0.6 mg·kg-1 ). The clearance of TXA, a compound cleared by glomerular filtration, given as a 1 g bolus followed by infusion (10 mg·kg-1 ·h-1 ), was similar between HBD and LD groups (~ 1 ml·min-1 ·kg-1 ). The TXA clearance in both groups was lower than the GFR, showing a small extent of hepatorenal coupling. The miR-122 and miR-148a expressions were similar for the HBD and LD groups, whereas GGT expression was significantly increased for HBD. The lower ROC clearance and the higher GGT levels in the HBD group of longer cold ischemia times performed worse than the LD group during the neophase. Metabololmics further showed clusters of bile acids, phospholipids and lipid ω-oxidation products for the LD and HBD groups. In conclusion, ROC CL and GGT expression, and metabolomics could serve as sensitive indices of early graft function. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Fallo Hepático , Trasplante de Hígado , Donantes de Tejidos , Adulto , Anciano , Androstanoles/sangre , Androstanoles/farmacocinética , Biomarcadores/análisis , Femenino , Humanos , Fallo Hepático/genética , Fallo Hepático/metabolismo , Masculino , Metabolómica , MicroARNs/genética , Persona de Mediana Edad , Modelos Biológicos , Proyectos Piloto , Rocuronio , Ácido Tranexámico/sangre , Ácido Tranexámico/farmacocinética , gamma-Glutamiltransferasa/genética
19.
Drug Metab Dispos ; 44(3): 308-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26566807

RESUMEN

Knowledge of drug absorption, distribution, metabolism, and excretion (ADME) or pharmacokinetics properties is essential for drug development and safe use of medicine. Varied or altered ADME may lead to a loss of efficacy or adverse drug effects. Understanding the causes of variations in drug disposition and response has proven critical for the practice of personalized or precision medicine. The rise of noncoding microRNA (miRNA) pharmacoepigenetics and pharmacoepigenomics has come with accumulating evidence supporting the role of miRNAs in the modulation of ADME gene expression and then drug disposition and response. In this article, we review the advances in miRNA pharmacoepigenetics including the mechanistic actions of miRNAs in the modulation of Phase I and II drug-metabolizing enzymes, efflux and uptake transporters, and xenobiotic receptors or transcription factors after briefly introducing the characteristics of miRNA-mediated posttranscriptional gene regulation. Consequently, miRNAs may have significant influence on drug disposition and response. Therefore, research on miRNA pharmacoepigenetics shall not only improve mechanistic understanding of variations in pharmacotherapy but also provide novel insights into developing more effective therapeutic strategies.


Asunto(s)
Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Inactivación Metabólica/genética , MicroARNs/genética , Preparaciones Farmacéuticas/metabolismo , Procesamiento Postranscripcional del ARN/genética , Animales , Humanos , Factores de Transcripción/genética
20.
J Biol Chem ; 289(6): 3105-13, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24318876

RESUMEN

Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.


Asunto(s)
Citocromo P-450 CYP2D6/biosíntesis , Hígado/enzimología , Embarazo/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Activación Transcripcional/fisiología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Citocromo P-450 CYP2D6/genética , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Femenino , Células Hep G2 , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Ratones , Ratones Transgénicos , Embarazo/genética , Regiones Promotoras Genéticas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Activación Transcripcional/efectos de los fármacos , Tretinoina/farmacocinética , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA