Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Learn Mem ; 25(4): 183-196, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29545390

RESUMEN

The evolutionarily conserved Elongator Complex associates with RNA polymerase II for transcriptional elongation. Elp3 is the catalytic subunit, contains histone acetyltransferase activity, and is associated with neurodegeneration in humans. Elp1 is a scaffolding subunit and when mutated causes familial dysautonomia. Here, we show that elp3 and elp1 are required for aversive long-term olfactory memory in Drosophila RNAi knockdown of elp3 in adult mushroom bodies impairs long-term memory (LTM) without affecting earlier forms of memory. RNAi knockdown with coexpression of elp3 cDNA reverses the impairment. Similarly, RNAi knockdown of elp1 impairs LTM and coexpression of elp1 cDNA reverses this phenotype. The LTM deficit in elp3 and elp1 knockdown flies is accompanied by the abolishment of a LTM trace, which is registered as increased calcium influx in response to the CS+ odor in the α-branch of mushroom body neurons. Coexpression of elp1 or elp3 cDNA rescues the memory trace in parallel with LTM. These data show that the Elongator complex is required in adult mushroom body neurons for long-term behavioral memory and the associated long-term memory trace.


Asunto(s)
Histona Acetiltransferasas/fisiología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/fisiología , Olfato , Animales , Animales Modificados Genéticamente , Condicionamiento Clásico , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Histona Acetiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Vías Olfatorias/fisiología
2.
J Neurosci ; 34(43): 14463-74, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25339757

RESUMEN

Synchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons. However, the functional organization of thalamic circuits and its role in shaping input-evoked activity patterns remain poorly understood. Here we show that optogenetic activation of cholinergic synaptic afferents evokes near-synchronous firing in mouse TRN neurons that is rapidly desynchronized in thalamic networks. We identify several mechanisms responsible for desynchronization: (1) shared inhibitory inputs in local VB neurons leading to asynchronous and imprecise rebound bursting; (2) TRN-mediated lateral inhibition that further desynchronizes firing in the VB; and (3) powerful yet sparse thalamoreticular connectivity that mediates re-excitation of the TRN but preserves asynchronous firing. Our findings reveal how distinct local circuit features interact to desynchronize thalamic network activity.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas Colinérgicas/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Red Nerviosa/fisiología , Tálamo/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
3.
J Neurosci ; 31(15): 5643-7, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490205

RESUMEN

A prior screen identified dozens of Drosophila melanogaster mutants that possess defective long-term memory (LTM). Using spaced olfactory conditioning, we trained 26 of these mutant lines to associate an odor cue with electric shock and then examined the memory of this conditioning 24 h later. All of the mutants tested revealed a deficit in LTM compared to the robust LTM observed in control flies. We used in vivo functional optical imaging to measure the magnitude of a previously characterized LTM trace, which is manifested as increased calcium influx into the axons of α/ß mushroom body neurons in response to the conditioned odor. This memory trace was defective in all 26 of the LTM mutants. These observations elevate the significance of this LTM trace given that 26 independent mutants all exhibit a defect in the trace, and further suggest that the calcium trace is a fundamental mechanism underlying Drosophila LTM.


Asunto(s)
Drosophila/genética , Drosophila/fisiología , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/fisiología , Mutación/fisiología , Neuronas/fisiología , Animales , Calcio/fisiología , Señalización del Calcio/fisiología , Condicionamiento Operante/fisiología , Interpretación Estadística de Datos , Aprendizaje/fisiología , Cuerpos Pedunculados/citología , Olfato/fisiología
4.
J Neurosci ; 30(49): 16699-708, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21148009

RESUMEN

Using functional optical imaging in vivo, we demonstrate that the γ mushroom body (MB) neurons of Drosophila melanogaster respond with axonal calcium influx when odors or electric shock stimuli are presented to the fly. Pairing of odor and electric shock stimuli in a single training trial or multiple, massed training trials failed to modify the odor-evoked calcium signal when flies were tested at several different times after training. In contrast, animals that received multiple but spaced odor-shock pairings exhibited a robust increase in calcium influx into the MB axons when tested between 18 and 48 h after training. This time window for the γ neuron memory trace is displaced relative to the modifications that occur between 9 and 24 h after training in the α branch of the α/ß MB neurons. The α/ß and the γ neuron long-term memory traces were both blocked by expressing a repressor of the transcription factor cAMP response element-binding protein or a calcium/calmodulin-dependent kinase II hairpin RNA. These results demonstrate that behavioral long-term olfactory memory is encoded as modifications of calcium influx into distinct MB neurons during overlapping but different windows of time after training.


Asunto(s)
Condicionamiento Clásico/fisiología , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/citología , Neuronas/fisiología , Olfato/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Proteína de Unión a CREB/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Drosophila , Estimulación Eléctrica/efectos adversos , Estimulación Eléctrica/métodos , Proteínas Sensoras del Calcio Intracelular/metabolismo , Neuronas/citología , Odorantes , Estadísticas no Paramétricas , Factores de Tiempo
5.
Neuron ; 52(5): 845-55, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17145505

RESUMEN

Functional optical imaging showed that odor or electric shock stimuli presented to the fly causes transient calcium influx into the two major axon branches of alpha/beta mushroom body (MB) neurons. One pairing of odor and electric shock stimuli or multiple, massed pairings did not alter odor-evoked calcium influx. In contrast, animals that received multiple, spaced pairings exhibited a robust increase in calcium influx into the MB axons when tested at 9 or 24 hr after training, but not at 3 hr. This modification occurred only in the alpha branch of the neurons and was blocked by mutation of the amnesiac gene, inhibition of protein synthesis, or the expression of a protein blocker of the transcription factor Creb. Thus, behavioral long-term olfactory memory appears to be encoded as a branch-specific modification of calcium influx into the alpha/beta MB neurons that occurs after spaced training in a protein synthesis-, Creb-, and amnesiac-dependent way.


Asunto(s)
Condicionamiento Operante/fisiología , Drosophila/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Olfato/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Calcio/metabolismo , Calcio/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Cicloheximida/farmacología , Electrochoque , Calor , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Plasticidad Neuronal/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología
6.
Neuron ; 42(3): 437-49, 2004 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15134640

RESUMEN

In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.


Asunto(s)
Condicionamiento Clásico/fisiología , Memoria/fisiología , Odorantes , Olfato/fisiología , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Electrochoque/métodos , Bulbo Olfatorio/metabolismo , Reclutamiento Neurofisiológico/fisiología , Sinapsis/genética
7.
Neuron ; 91(4): 739-747, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27499081

RESUMEN

Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Estimulación Encefálica Profunda , Fórnix/fisiología , Proteína 2 de Unión a Metil-CpG/fisiología , Inhibición Neural/fisiología , Síndrome de Rett/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Duplicación de Gen/genética , Homeostasis/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Mosaicismo , Mutación/fisiología , Células Piramidales/fisiología , Síndrome de Rett/genética
8.
J Neurosci ; 23(1): 64-72, 2003 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12514202

RESUMEN

Camgaroos are yellow fluorescent protein derivatives that hold promise as transgenically encoded calcium sensors in behaving animals. We expressed two versions of camgaroo in Drosophila mushroom bodies using the galactosidase-4 (GAL4) system. Potassium depolarization of brains expressing the reporters produces a robust increase in fluorescence that is blocked by removing extracellular calcium or by antagonists of voltage-dependent calcium channels. The fluorescence increase is not attributable to cytoplasmic alkalization; depolarization induces a slight acidification of the cytoplasm of mushroom body neurons. Acetylcholine applied near the dendrites of the mushroom body neurons induces a rapid and ipsilateral-specific fluorescence increase in the mushroom body axons that is blocked by antagonists of calcium channels or nicotinic acetylcholine receptors. Fluorescence was observed to increase in all three classes of mushroom body neurons, indicating that all types respond to cholinergic innervation.


Asunto(s)
Calcio/análisis , Drosophila/química , Proteínas Luminiscentes/análisis , Cuerpos Pedunculados/química , Neuronas/química , Acetilcolina/farmacología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Proteínas de Unión al ADN , Drosophila/efectos de los fármacos , Drosophila/metabolismo , Proteínas Fluorescentes Verdes , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Potasio/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transgenes
9.
Cell Rep ; 4(6): 1082-9, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24035392

RESUMEN

Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with ß-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM) without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type ß-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memoria a Largo Plazo/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Proteínas del Dominio Armadillo/biosíntesis , Proteínas del Dominio Armadillo/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Masculino , Neuronas/metabolismo , Vías Olfatorias/metabolismo , Transducción de Señal , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transgenes
10.
PLoS One ; 8(8): e70415, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940572

RESUMEN

The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R) dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions.


Asunto(s)
Locomoción/fisiología , Neuronas/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Corticoesteroides/sangre , Animales , Western Blotting , Electrofisiología , Femenino , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor del Glutamato Metabotropico 5/genética
11.
Neuron ; 67(5): 810-20, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20826312

RESUMEN

Cyclic AMP signaling in Drosophila mushroom body neurons, anchored by the adenylyl cyclase encoded by the rutabaga gene, is indispensable for olfactory memory formation. From a screen for new memory mutants, we identified alleles of the gilgamesh (gish) gene, which encodes a casein kinase Iγ homolog that is preferentially expressed in the mushroom body neurons. The gish-encoded kinase participates in the physiology of these neurons underlying memory formation since the mutant memory deficit was rescued with expression of a gish cDNA in these neurons only during adulthood. A cellular memory trace, detected as increased calcium influx into the α'/ß' neuron processes in response to the odor used for conditioning, was disrupted in gish mutants. Epistasis experiments indicated a lack of genetic interactions between gish and rutabaga. Therefore, gish participates in a rutabaga-independent pathway for memory formation and accounts for some of the residual learning that occurs in rutabaga mutants.


Asunto(s)
Adenilil Ciclasas/metabolismo , Reacción de Prevención/fisiología , Quinasa de la Caseína I/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Olfato/fisiología , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Quinasa de la Caseína I/deficiencia , Quinasa de la Caseína I/genética , Condicionamiento Clásico/fisiología , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Regulación de la Expresión Génica/genética , Trastornos de la Memoria/genética , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/metabolismo , Mutación/genética , Odorantes
12.
Cell ; 123(5): 945-57, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16325586

RESUMEN

Formation of normal olfactory memory requires the expression of the wild-type amnesiac gene in the dorsal paired medial (DPM) neurons. Imaging the activity in the processes of DPM neurons revealed that the neurons respond when the fly is stimulated with electric shock or with any odor that was tested. Pairing odor and electric-shock stimulation increases odor-evoked calcium signals and synaptic release from DPM neurons. These memory traces form in only one of the two branches of the DPM neuron process. Moreover, trace formation requires the expression of the wild-type amnesiac gene in the DPM neurons. The cellular memory traces first appear at 30 min after conditioning and persist for at least 1 hr, a time window during which DPM neuron synaptic transmission is required for normal memory. DPM neurons are therefore "odor generalists" and form a delayed, branch-specific, and amnesiac-dependent memory trace that may guide behavior after acquisition.


Asunto(s)
Condicionamiento Clásico/fisiología , Drosophila melanogaster , Memoria/fisiología , Neuronas/metabolismo , Olfato/fisiología , Animales , Calcio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Estimulación Eléctrica , Neuronas/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Odorantes , Transmisión Sináptica/fisiología , Factores de Tiempo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA