RESUMEN
Tumor necrosis factor alpha-induced protein-3, also called A20, is a zinc-finger protein that participates in various inflammatory responses; however, the putative relationship between A20 and hepatic fibrosis remains unelucidated. Therefore, we investigated the role and mechanism of action of A20 in activating hepatic stellate cells (HSC) during the progression of hepatic fibrosis. Cell counting kit-8 (CCK8), colony growth, transwell assays, cell cycle analysis, and apoptosis assays were performed to explore the effect of A20 on cell function in vitro. An interspecies intravenous injection of the adeno-associated virus was used to assess the in vivo role of A20. The regulation of A20 on p65 was detected using mass spectrometry and immunoprecipitation. Our findings revealed that A20 was highly expressed in the liver tissues of patients with hepatic fibrosis and that the expression level of A20 in the liver tissue was closely correlated with the stage of liver fibrosis. In the LX-2 cell line, the downregulation of A20 upregulated the expression of fibrosis-related proteins and increased the expression of inflammatory factors, indicating the activation of HSC and vice versa. In addition, overexpression of A20 in mice reduced the degree of liver fibrosis in thioacetamide model mice. Finally, co-immunoprecipitation demonstrated that A20 could interact with p65. Hence, A20 inhibits HSC activation by binding to p65.
Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , FN-kappa B/metabolismo , FN-kappa B/farmacología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Transducción de Señal , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patologíaRESUMEN
To achieve large-scale development of triboelectric nanogenerators (TENGs) for water wave energy harvesting and powering the colossal sensors widely distributed in the ocean, facile and scalable TENGs with high output are urgently required. Here, an elastic self-recovering hybrid nanogenerator (ES-HNG) is proposed for water wave energy harvesting and marine environmental monitoring. The elastic skeletal support of the ES-HNG is manufactured using three-dimensional (3D) printing technology, which is more conducive to the large-scale integration of the ES-HNG. Moreover, the combination of a TENG and an electromagnetic generator (EMG) optimizes the utilization of device space, leading to enhanced energy harvesting efficiency. Experimental results demonstrate that the TENG achieves a peak power output of 42.68 mW, and the EMG reaches a peak power output of 4.40 mW. Furthermore, various marine environment monitoring sensors, such as a self-powered wireless meteorological monitoring system, a wireless alarm system, and a water quality monitoring pen, have been successfully powered by the sophisticated ES-HNG. This work introduces an ES-HNG for water wave energy harvesting, which demonstrates potential in marine environment monitoring and offers a new solution for the sustainable development of the marine internet of things.
RESUMEN
PURPOSE: The accurate prediction of treatment response in locally advanced rectal cancer (LARC) patients undergoing MRI-guided radiotherapy (MRIgRT) is essential for optimising treatment strategies. This multi-institutional study aimed to investigate the potential of radiomics in enhancing the predictive power of a known radiobiological parameter (Early Regression Index, ERITCP) to evaluate treatment response in LARC patients treated with MRIgRT. METHODS: Patients from three international sites were included and divided into training and validation sets. 0.35 T T2*/T1-weighted MR images were acquired during simulation and at each treatment fraction. The biologically effective dose (BED) conversion was used to account for different radiotherapy schemes: gross tumour volume was delineated on the MR images corresponding to specific BED levels and radiomic features were then extracted. Multiple logistic regression models were calculated, combining ERITCP with other radiomic features. The predictive performance of the different models was evaluated on both training and validation sets by calculating the receiver operating characteristic (ROC) curves. RESULTS: A total of 91 patients was enrolled: 58 were used as training, 33 as validation. Overall, pCR was observed in 25 cases. The model showing the highest performance was obtained combining ERITCP at BED = 26 Gy with a radiomic feature (10th percentile of grey level histogram, 10GLH) calculated at BED = 40 Gy. The area under ROC curve (AUC) of this combined model was 0.98 for training set and 0.92 for validation set, significantly higher (p = 0.04) than the AUC value obtained using ERITCP alone (0.94 in training and 0.89 in validation set). CONCLUSION: The integration of the radiomic analysis with ERITCP improves the pCR prediction in LARC patients, offering more precise predictive models to further personalise 0.35 T MRIgRT treatments of LARC patients.
Asunto(s)
Radiómica , Neoplasias del Recto , Humanos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/radioterapia , Neoplasias del Recto/patología , Imagen por Resonancia Magnética/métodos , Recto , Terapia Neoadyuvante/métodos , Estudios RetrospectivosRESUMEN
Owing to its relatively low absorption loss and high data transmission rate, wireless blue light communication is becoming an increasingly attractive technology for underwater applications. Here, we demonstrate an underwater optical wireless communication (UOWC) system that communicates using blue light-emitting diodes (LEDs) with a dominant wavelength of 455â nm. Under the on-off keying modulation scheme, the waterproof UOWC system achieves a bidirectional communication rate of 4 Mbps based on the transmission control protocol (TCP) and exhibits real-time full-duplex video communication with a transmission distance of 12 m in a swimming pool, offering great potential for practical use in real-world scenarios, such as carried around or attached to an autonomous vehicle.
RESUMEN
Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.
Asunto(s)
Plaguicidas , Solanum lycopersicum , Antioxidantes/metabolismo , Solanum lycopersicum/genética , Disulfuro de Glutatión/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Plaguicidas/metabolismo , Plantas/metabolismo , Homeostasis , Estrés OxidativoRESUMEN
Precise synthesis of topologically predictable and discrete molecular crystals with permanent porosities remains a long-term challenge. Here, we report the first successful synthesis of a series of 11 isoreticular multivariate hydrogen-bonded organic frameworks (MTV-HOFs) from pyrene-based derivatives bearing -H, -CH3 , -NH2 and -F groups achieved by a shape-fitted, π-π stacking self-assembly strategy. These MTV-HOFs are single-crystalline materials composed of tecton, as verified by single-crystal diffraction, nuclear magnetic resonance (NMR) spectra, Raman spectra, water sorption isotherms and density functional theory (DFT) calculations. These MTV-HOFs exhibit tunable hydrophobicity with water uptake starting from 50 to 80 % relative humidity, by adjusting the combinations and ratios of functional groups. As a proof of application, the resulting MTV-HOFs were shown to be capable of capturing a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES) from moisture. The location of different functional groups within the pores of the MTV-HOFs leads to a synergistic effect, which resulted in a superior CEES/H2 O selectivity (up to 94 %) compared to that of the HOFs with only pure component and enhanced breakthrough performance (up to 4000â min/g) when compared to benchmark MOF materials. This work is an important advance in the synthesis of MTV-HOFs, and provides a platform for the development of porous molecular materials for numerous applications.
RESUMEN
Causes of mortality in EC patients are not confined to cancer-specific mortality but include various protein expressions of SOX2 and mTOR in Esophageal Cancer patients and their correlation with the clinical stage. Data about the risk factors and involvement of cancer-specific protein are still lacking. This study aimed to define the risk factors and association of SOX2 and mTOR expression in mortality in patients with EC. We conducted a retrospective cohort study to assess the risk factors for cancer-specific mortality and cardiovascular mortality in patients with esophageal cancer (EC). The expression rates of SOX2, as well as MTO, were checked in patients. The multivariate analysis revealed a high-risk EC mortality with age ≥ 65 years, black race, grade, stage, and sequence of treatment; radiation after surgery; radiation before and after surgery; Surgery both before and after radiation. While the cardiovascular mortality increased with age ≥ 65 years, adenocarcinoma type, grade, stage, and sequence of treatment. The expression rates of SOX2, as well as mTOR, were 75.5 percent and 86.8 percent in Esophageal Cancer, while were 10.7 percent and 7.5 percent in osteochondroma, respectively, which was statistically significant (P<0.05). Risk factors for cancer-specific mortality and cardiovascular mortality in EC patients include older age at diagnosis, male sex, non-married status, grade III of the tumor, the regional or distant spread of the tumor, no cancer-directed therapy. The expression levels of SOX2, mTOR, and the total survival time were related to the different stages. It shows an upward trend for the expression levels of mTOR and SOX2 in Esophageal Cancer tissues. The expression levels of SOX2 and mTOR are related to the clinical stage, metastasis, and prognosis.
Asunto(s)
Enfermedades Cardiovasculares , Neoplasias Esofágicas , Anciano , Humanos , Masculino , Estudios Retrospectivos , Factores de Riesgo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Glutathione (GSH) biosynthesis and regeneration play a significant role in the metabolism of chlorothalonil (CHT) in tomatoes. However, the specific regulatory mechanism of GSH in the degradation of CHT remains uncertain. To address this, we investigate the critical regulatory pathways in the degradation of residual CHT in tomatoes. The results revealed that the detoxification of CHT residue in tomatoes was inhibited by buthionine sulfoximine and oxidized glutathione pretreatment, which increased by 26% and 46.12% compared with control, respectively. Gene silencing of γECS, GS, and GR also compromised the CHT detoxification potential of plants, which could be alleviated by GSH application and decreased the CHT accumulation by 33%, 25%, and 21%, respectively. Notably, it was found that the jasmonic acid (JA) pathway participated in the degradation of CHT regulated by GSH. CHT residues reduced by 28% after application of JA. JA played a role downstream of the glutathione pathway by promoting the degradation of CHT residue in tomatoes via nitric oxide signaling and improving the gene expression of antioxidant and detoxification-related enzymes. This study unveiled a crucial regulatory mechanism of GSH via the JA pathway in CHT degradation in tomatoes and offered new insights for understanding residual pesticide degradation.
Asunto(s)
Solanum lycopersicum , Ciclopentanos , Glutatión/metabolismo , Solanum lycopersicum/genética , Nitrilos , Oxilipinas/metabolismoRESUMEN
BACKGROUND: Cotton (Gossypium spp.) is the most important world-wide fiber crop but salt stress limits cotton production in coastal and other areas. Growth regulation factors (GRFs) play regulatory roles in response to salt stress, but their roles have not been studied in cotton under salt stress. RESULTS: We identified 19 GRF genes in G. raimondii, 18 in G. arboreum, 34 in G. hirsutum and 45 in G. barbadense, respectively. These GRF genes were phylogenetically analyzed leading to the recognition of seven GRF clades. GRF genes from diploid cottons (G. raimondii and G. arboreum) were largely retained in allopolyploid cotton, with subsequent gene expansion in G. barbadense relative to G. hirsutum. Most G. hirsutum GRF (GhGRF) genes are preferentially expressed in young and growing tissues. To explore their possible role in salt stress, we used qRT-PCR to study expression responses to NaCl treatment, showing that five GhGRF genes were down-regulated in leaves. RNA-seq experiments showed that seven GhGRF genes exhibited decreased expression in leaves under NaCl treatment, three of which (GhGRF3, GhGRF4, and GhGRF16) were identified by both RNA-seq and qRT-PCR. We also identified six and three GRF genes that exhibit decreased expression under salt stress in G. arboreum and G. barbadense, respectively. Consistent with its lack of leaf withering or yellowing under the salt treatment conditions, G. arboreum had better salt tolerance than G. hirsutum and G. barbadense. Our results suggest that GRF genes are involved in salt stress responses in Gossypium. CONCLUSION: In summary, we identified candidate GRF genes that were involved in salt stress responses in cotton.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés SalinoRESUMEN
In this study, we designed a novel ultra-wideband (UWB) absorber and numerically analyzed it to demonstrate that its light absorptivity was greater than 90% in the wavelength range of visible light and near-infrared (405-1505 nm). The structure of proposed novel UWB absorber consisted of four layers of films, including silica, titanium, magnesium fluoride, and aluminium, and the upper silica and titanium layers had rectangular cubes in them. For that, the excitations of propagating surface plasmon resonance (PSPR), local surface plasmon resonance (LSPR), and the resonance of Fabry-Perot (FP) cavity were generated at the same time and combined to reach the effect of perfect absorption and ultra-wideband. The proposed absorber had an average absorptivity of 95.14% in the wavelength range of 405 â¼ 1505 nm when the light was under normal incidence. In addition, the UWB absorber was large incident angle insensitive and polarization-independent. The absorber proposed in the paper had great prospects in the fields of thermal electronic equipment, solar power generation, and perfect cloaking.
RESUMEN
Glioma is characterized by high morbidity, high mortality and poor prognosis. Recent studies exhibited that lncRNA CCAT2 is overexpressed in glioma and promotes glioma progression, but the specific molecular biological mechanism remains to be determined. We performed qRT-PCR to evaluate the expression of related genes, Western blotting analysis to measure protein levels, colony formation assay to detect the proliferative ability of glioma cells, flow cytometry to measure cell apoptosis, bioinformatics analysis and dual luciferase assay to verify the binding sites and the targeted regulatory relationship in A172 and U251 cell lines and tube formation assay to determine endothelial angiogenesis. LncRNA CCAT2 and VEGFA were highly expressed, while miR-424 was expressed at low levels in NHA cells. Furthermore, knockdown of lncRNA CCAT2 decreased cell proliferation, increased cell apoptosis and inhibited endothelial angiogenesis in glioma. Moreover, lncRNA CCAT2 shared a complementary sequence with miR-424 which in turn directly bound to the 3'-UTR of VEGFA. Further investigation indicated that lncRNA CCAT2 promoted cell proliferation and endothelial angiogenesis by inducing the PI3K/AKT signalling pathway in glioma. The oncogenic lncRNA CCAT2 is highly associated with the development of glioma and exerts its function by upregulating VEGFA via miR-424.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Glioma/metabolismo , MicroARNs/metabolismo , Neovascularización Patológica/metabolismo , ARN Largo no Codificante/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Regiones no Traducidas 3' , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Glioma/genética , Humanos , MicroARNs/genética , Neovascularización Patológica/genética , Oncogenes/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Transducción de Señal/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
RATIONALE: Coal oxidation produces carboxylic acids (CAs), including aliphatic acids, benzoic acids, and benzenepolycarboxylic acids, which are important fine chemicals which could be used to understand the structural features of coals. However, detecting CAs usually presents great challenges due to extremely troublesome pretreatments. Therefore, it is essential to develop an analytical method for the rapid detection of CAs from coal oxidation. METHODS: A series of model compounds (MCs) of oxidation products and two practical samples were investigated by direct analysis in real time time-of-flight mass spectrometry (DART-TOFMS) under three different analytical conditions (ionizing gas temperature, organic solvent, and MC concentration). RESULTS: Ionizing methyl benzoate, dimethyl phthalate, and dimethyl adipate produces typical ions of methyl esters, including [M - OCH3 ]+ , [M + H]+ , and [M + NH4 ]+ . In contrast, the characteristic ions generated from CAs are polymer ions, such as [2 M + NH4 ]+ , [3 M + NH4 ]+ , [4 M + NH4 ]+ , and [5 M + NH4 ]+ , indicating the strong intermolecular hydrogen-bond interaction among CAs. CONCLUSIONS: Results suggest that DART-TOFMS could rapidly analyze CAs or esters in coal oxidation products according to their typical ions to further gain deep insights into the coal structure.
RESUMEN
Recently, it has been suggested that molecular hydrogen (H2) can selectively reduce the levels of hydroxyl radicals (.OH), and ameliorate oxidative and inflammatory injuries to organs in global cerebral ischemia reperfusion models. Global cerebral ischemia/reperfusion (I/R) can induce a sudden activation of inflammatory cytokines and later influence the systemic immunoreactivity which may contribute to a worse outcome. Regulatory T cells (Tregs) are involved in several pathological aspects of cerebral I/R. In addition, miRNA took part in the processes of cellular response to hypoxia. Since the expression of a specific set of miRNA called "hypoxamirs" is upregulated by hypoxia. Therefore, the aim of this study was to analyze the effect of HRS on I/R inducing cerebral damage, Tregs, and specific miRNA. Our results showed that rats undergone global cerebral I/R and treated with HRS have milder injury than I/R animals without HRS treatment. miR-210 expression in the hippocampus of the I/R group at 6, 24 and 96 h after reperfusion was significantly increased at each time point, while its expression in the group treated with HRS was significantly decreased. In addition, Tregs number in group I/R was decreased at each time points, while its number in the group treated with HRS was increased at 24 and 96 h after reperfusion. We focus on the relationship among Tregs, TGF-ß1, TNF-α and NF-κB at 24 h, and we found that there is a high correlation among them. Therefore, our results indicated that the brain resuscitation mechanism in the HRS-treated rats may be related with the effect of upregulating the number of Treg cells.
Asunto(s)
Isquemia Encefálica/metabolismo , Hidrógeno/farmacología , MicroARNs/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Regulación hacia ArribaRESUMEN
The UV-B radiation on the surface of our planet has been enhanced due to gradual thinning of ozone layer. The change of solar spectrum UV-B radiation will cause damage to all kinds of terrestrial plants at certain degree. In this paper, taking breeding sorghum (Sorghum bicolor (L.Moench))variety Longza No.5 as sample, 40 µW·cm-2 UV-B radiation treatment was conducted on sorghum seedlings at two-leaf and one-heart stage and different time courses; then after a 2 d recovering, photosynthetic parameters were measured with a photosynthetic apparatus; the activities of antioxidant enzymes were detected as well. Our results revealed that, as the dosages of UV-B increasing, leaf browning injury was aggravated, plants dwarfing and significantly were reduced fresh weight and dry weight were observed; anthocyanin content was significantly increased; chlorophyll and carotenoid content significantly were reduced and net photosynthetic rate and chlorophyll fluorescence parameters were decreased. Meanwhile, with the increase in UV-B dosages, stomatal conductance, intercellular CO2 concentration and transpiration rate showed "down - up - down" trend; the activities of SOD and GR presented "down - up" changes; activities of POD and CAT demonstrated "down - up - down", and APX, GPX showed an "up - down - up" pattern. It is worth to note that, under the four-dose treatment, a sharp decline in net photosynthesis in sorghum seedlings was observed at 6 h UV-B treatment (equals to 2.4 J·m-2), and an obvious turning point was also found for other photosynthetic parameters and activities of antioxidant enzymes at the same time point. In summary, the results indicated that the enhanced UV-B radiation directly accounted for the damages in photosynthesis system including photosynthetic pigment content, net photosynthetic rate and chlorophyll fluorescence parameters of sorghum; the antioxidant system showed different responses to UV-B radiation below or above 6 h treatment: ASA-GSH cycle was more sensitive to low-dose UV-B radiation, while high-dose UV-B radiation not only undermined the photosynthesis system, but also triggered plant enzymatic and non-enzymatic antioxidant systems, resulting in leaf browning and necrosis,biomass accumulation reduction, plant dwarfing and even death.
Asunto(s)
Sorghum , Antioxidantes , Biomasa , Clorofila , Fotosíntesis , Hojas de la Planta , Plantones , Rayos UltravioletaRESUMEN
Acute kidney injury associated with renal hypoperfusion is a frequent and severe complication during sepsis. Fluid resuscitation is the main therapy. However, heart failure is usually lethal for those patients receiving large volumes of fluids. We compared the effects of small-volume resuscitation using four different treatment regimens, involving saline, hypertonic saline (HTS), hydroxyethyl starch (HES), or hypertonic saline hydroxyethyl starch (HSH), on the kidneys of rats treated with lipopolysaccharide (LPS) to induce endotoxemia. LPS injection caused reduced and progressively deteriorated systemic (arterial blood pressure) and renal hemodynamics (renal blood flow and renal vascular resistance index) over time. This deterioration was accompanied by marked renal functional and pathological injury, as well as an oxidative and inflammatory response, manifesting as increased levels of tumor necrosis factor-α, nitric oxide, and malondialdehyde and decreased activity of superoxide dismutase. Small-volume perfusion with saline failed to improve renal and systemic circulation. However, small-volume perfusion with HES and HSH greatly improved the above parameters, while HTS only transiently improved systemic and renal hemodynamics with obvious renal injury. Therefore, single small-volume resuscitation with HES and HSH could be valid therapeutic approaches to ameliorate kidney injury induced by endotoxemia, while HTS transiently delays injury and saline shows no protective effects.
Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Endotoxemia/complicaciones , Fluidoterapia/métodos , Derivados de Hidroxietil Almidón/uso terapéutico , Animales , Endotoxemia/inducido químicamente , Lipopolisacáridos/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley , Solución Salina Hipertónica/uso terapéuticoRESUMEN
The aim of this paper is to develop a method for ranking trapezoidal intuitionistic fuzzy numbers (TrIFNs) in the process of decision making in the intuitionistic fuzzy environment. Firstly, the concept of TrIFNs is introduced. Arithmetic operations and cut sets over TrIFNs are investigated. Then, the values and ambiguities of the membership degree and the nonmembership degree for TrIFNs are defined as well as the value-index and ambiguity-index. Finally, a value and ambiguity-based ranking method is developed and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes are expressed using TrIFNs. A numerical example is examined to demonstrate the implementation process and applicability of the method proposed in this paper. Furthermore, comparison analysis of the proposed method is conducted to show its advantages over other similar methods.
Asunto(s)
Algoritmos , Modelos TeóricosRESUMEN
This study aimed to clarify the effect of long-term continuous cropping of pepper on soil fungal community structure, reveal the mechanism of continuous cropping obstacles, and provide a theoretical basis for the ecological safety and sustainable development of pepper industry. We took the pepper continuous cropping soil in the vegetable greenhouse planting base of Tongren City as the research object. The diversity and community structure of fungi in farmland soil were analyzed using Illumina MiSeq high-throughput sequencing, the responses of soil physio-chemical properties and fungal community characteristics to long-term continuous pepper cropping were discussed, and the relationships between the characteristics of fungal community structure and environmental factors were determined using CCA and correlation network analysis. The results showed that with the extension of pepper continuous cropping years, the soil pH value and organic matter (OM) content decreased, total phosphorus (TP) and available phosphorus (AP) contents increased, hydrolyzed nitrogen (AN) and available potassium (AK) contents decreased first and then increased, and total nitrogen (TN) and total potassium (TK) contents did not change significantly. Long-term continuous cropping decreased the Chao1 index and observed species index and decreased the Shannon index and Simpson index. The change in continuous cropping years had a significant effect on the relative abundance of soil fungal dominant flora. At the phylum level, the relative abundance of Mortierellomycota decreased with the extension of pepper continuous cropping years, the relative abundance of Ascomycota increased first and then decreased, and the relative abundance of Basidiomycota decreased first and then increased. At the genus level, with the increasing of pepper continuous cropping years, the relative abundance of Fusarium increased, and the relative abundance of Mortierella and Penicillium decreased. In addition, long-term continuous cropping simplified the soil fungal symbiosis network. CCA analysis indicated that pH, OM, TN, AN, AP, and AK were the driving factors of soil fungal community structure, and correlation network analysis showed that pH, OM, TN, TP, TK, AN, AP, and AK were the driving factors of soil fungal community structure, including Fusarium, Lophotrichus, Penicillium, Mortierella, Botryotrichum, Staphylotrichum, Plectosphaerella, and Acremonium. In conclusion, continuous cropping changed the soil physical and chemical properties, affected the diversity and community structure of the soil fungal community, changed the interaction between microorganisms, and destroyed the microecological balance of the soil, which might explain obstacles associated with continuous cropped pepper.
Asunto(s)
Fusarium , Micobioma , Penicillium , Suelo/química , Microbiología del Suelo , Productos Agrícolas , Nitrógeno , Fósforo , PotasioRESUMEN
A palladium-catalyzed dearomative diarylation of C2-deuterated or C2-nonsubstituted indoles through domino Heck/Suzuki coupling is established. Relying on electron-deficient phosphite ligand, side reactions including intermolecular Suzuki coupling and intramolecular C-D/H arylation are inhibited and a wide range of 2,3-diarylated indolines bearing vicinal tertiary stereocenters including deuterated ones are afforded in moderate to excellent yields (up to 94%) and excellent diastereoselectivities (>20:1). The catalyst loading can be lowered to 0.02 mol % at elevated temperature.
RESUMEN
An enantioselective Pd-catalyzed intramolecular desymmetrizing cycloisomerization of N-(cyclopent-3-en-1-yl)propiolamides has been developed by employing a new chiral phosphoramidite ligand. A series of structurally unique bridged azabicycles are achieved in moderate to excellent yields with good E/Z selectivity and high enantioselectivity. Synthetic transformations are conducted to demonstrate the practical utility of this reaction.
RESUMEN
Introduction. Recently, the incidence of Mycoplasma pneumoniae (M. pneumoniae) infection in children has been increasing annually. Early differential diagnosis of M. pneumoniae infection can not only avoid the abuse of antibiotics, but also is essential for early treatment and reduction of transmission.Gap statement. The change of routine blood parameters may have important clinical significance for the diagnosis of M. pneumoniae infection, but it has not been reported so far.Aim. This study aims to establish a predictive model for M. pneumoniae infection and explore the changes and clinical value of routine blood parameters in children with M. pneumoniae infection, serving as auxiliary indicators for the diagnosis and differentiation of clinical M. pneumoniae infection.Methodology. A total of 770 paediatric patients with respiratory tract infections were enrolled in this study, including 360 in the M. pneumoniae group, 40 in the SARS-CoV-2 group, 200 in the influenza A virus group, and 170 in the control group. The differences of routine blood parameters among all groups were compared, and risk factors were analysed using multivariate logistics analysis, and the diagnostic efficacy of differential indicators using ROC curves.Results. This study revealed that Mono% (OR: 3.411; 95% CI: 1.638-7.102; P=0.001) was independent risk factor associated with M. pneumoniae infection, and Mono% (AUC=0.786, the optimal cutoff at 7.8%) had a good discriminative ability between patients with M. pneumoniae infection and healthy individuals. Additionally, Mono% (OR: 0.424; 95% CI: 0.231-0.781; P=0.006) and Lymp% (OR: 0.430; 95% CI: 0.246-0.753; P=0.003) were independent risk factors for distinguishing M. pneumoniae infection from influenza A virus infection, and the Lymp% (AUC=0.786, the optimal cutoff at 22.1%) and Net% (AUC=0.761, the optimal cutoff at 65.2%) had good discriminative abilities between M. pneumoniae infection and influenza A infection. Furthermore, platelet distribution width (OR: 0.680; 95% CI: 0.538-0.858; P=0.001) was independent risk factor for distinguishing M. pneumoniae infection from SARS-CoV-2 infection. Meanwhile, the ROC curve demonstrated that PDW (AUC=0.786, the optimal cutoff at 15%) has a good ability to differentiate between M. pneumoniae infection and SARS-CoV-2 infection.Conclusion. This study demonstrates that routine blood parameters can be used as auxiliary diagnostic indicators for M. pneumoniae infection and provide reference for the diagnosis and differentiation of clinical M. pneumoniae infection.