Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Curr Genet ; 67(2): 231-235, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33247310

RESUMEN

Cell aging is the result of deteriorating competence in maintaining cellular homeostasis and quality control. Certain cell types are able to rejuvenate through asymmetric cell division by excluding aging factors, including damaged cellular compartments and extrachromosomal rDNA circles, from entering the daughter cell. Recent findings from the budding yeast S. cerevisiae have shown that gametogenesis represents another type of cellular rejuvenation. Gametes, whether produced by an old or a young mother cell, are granted a renewed replicative lifespan through the formation of a fifth nuclear compartment that sequesters the harmful senescence factors accumulated by the mother. Here, we describe the importance and mechanism of cellular remodeling at the nuclear envelope mediated by ESCRT-III and the LEM-domain proteins, with a focus on nuclear pore biogenesis and chromatin interaction during gamete rejuvenation.


Asunto(s)
Senescencia Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Gametogénesis/genética , Meiosis/genética , ADN Ribosómico/genética , Herencia Extracromosómica/genética , Homeostasis/genética , Membrana Nuclear/genética , Rejuvenecimiento/fisiología , Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 13(6): e1006830, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28609436

RESUMEN

Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc) inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery.


Asunto(s)
Segregación Cromosómica/genética , Meiosis/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética , Centrosoma/metabolismo , Regulación Fúngica de la Expresión Génica , Microtúbulos/genética , Membrana Nuclear/genética , Dominios Proteicos/genética , Saccharomyces cerevisiae/genética , Telómero/genética
3.
PLoS Genet ; 8(2): e1002492, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319456

RESUMEN

The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments.


Asunto(s)
Cromosomas/genética , Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Mitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Anafase/genética , Aurora Quinasas , Segregación Cromosómica/genética , Regulación Fúngica de la Expresión Génica , Mutación , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Intercambio de Cromátides Hermanas/genética
4.
J Cell Sci ; 124(Pt 17): 2891-6, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21878496

RESUMEN

In budding yeast, the microtubule-organizing center is called the spindle pole body (SPB) and shares structural components with the centriole, the central core of the animal centrosome. During meiotic interphase I, the SPB is duplicated when DNA replication takes place. Duplicated SPBs are linked and then separate to form a bipolar spindle required for homolog separation in meiosis I. During interphase II, SPBs are duplicated again, in the absence of DNA replication, to form four SPBs that establish two spindles for sister-chromatid separation in meiosis II. Here, we report that the Aurora kinase Ipl1, which is necessary for sister-chromatid cohesion, is also required for maintenance of a tight association between duplicated SPBs during meiosis, which we term SPB cohesion. Premature loss of cohesion leads to SPB overduplication and the formation of multipolar spindles. By contrast, the Polo-like kinase Cdc5 is necessary for SPB duplication and interacts antagonistically with Ipl1 at the meiotic SPB to ensure proper SPB separation. Our data suggest that Ipl1 coordinates SPB dynamics with the two chromosome segregation cycles during yeast meiosis.


Asunto(s)
Meiosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomycetales/citología , Huso Acromático/enzimología , Aurora Quinasas , Centrosoma/enzimología , Centrosoma/fisiología , Interfase/fisiología , Saccharomyces cerevisiae/enzimología
5.
J Cell Biol ; 176(7): 911-8, 2007 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-17371833

RESUMEN

Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aurora Quinasas , Sitios de Unión/fisiología , Proteínas de Ciclo Celular/genética , Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Unión Proteica/fisiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
6.
Chromosome Res ; 19(8): 1013-26, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22083303

RESUMEN

A prerequisite for determination of chromosome dynamics in live cells is development of a method for staining or marking the chromosome of interest. We describe here a unique chromosome-tracking system that differentially marks two large chromosome segments from homologs in the budding yeast Saccharomyces cerevisiae. Using yeast genetics and the special features at the repetitive ribosomal RNA (rRNA) gene cluster, we incorporated arrays of the tet operator and the lac operator into each repeat of the two rDNA homologs by homologous recombination. Expression of tet repressor-fused green fluorescent protein and lac repressor-fused red fluorescent protein in engineered cells led to the differential labeling of rDNA homologs. Using live-cell three-dimensional fluorescence microscopy, we showed that homologs undergo contraction and expansion cycles in an actin-dependent manner during meiosis and that chromosome mobility appears to be correlated with nuclear positioning. Our observations further revealed that, in contrast to mitosis, in meiosis the yeast nucleolus, the site of rRNA processing, was disassembled upon anaphase onset, suggesting a differential regulation of the rDNA array during meiotic chromosome segregation. Because rRNA genes are highly conserved, a similar chromosome-engineering approach may be adaptable in other eukaryotes for functional assays of chromosome organization in live cells.


Asunto(s)
Anafase/genética , Nucléolo Celular/genética , Cromosomas Fúngicos/genética , ADN Ribosómico/genética , Meiosis , Saccharomyces cerevisiae/genética , Nucléolo Celular/metabolismo , Segregación Cromosómica/genética , Cromosomas Fúngicos/metabolismo , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Recombinación Homóloga/genética , Represoras Lac/genética , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Ingeniería de Proteínas/métodos , Proteínas Represoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Fluorescente Roja
7.
Life Sci Alliance ; 3(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32967926

RESUMEN

The linker of the nucleoskeleton and cytoskeleton (LINC) complex is composed of two transmembrane proteins: the KASH domain protein localized to the outer nuclear membrane and the SUN domain protein to the inner nuclear membrane. In budding yeast, the sole SUN domain protein, Mps3, is thought to pair with either Csm4 or Mps2, two KASH-like proteins, to form two separate LINC complexes. Here, we show that Mps2 mediates the interaction between Csm4 and Mps3 to form a heterotrimeric telomere-associated LINC (t-LINC) complex in budding yeast meiosis. Mps2 binds to Csm4 and Mps3, and all three are localized to the telomere. Telomeric localization of Csm4 depends on both Mps2 and Mps3; in contrast, Mps2's localization depends on Mps3 but not Csm4. Mps2-mediated t-LINC complex regulates telomere movement and meiotic recombination. By ectopically expressing CSM4 in vegetative yeast cells, we reconstitute the heterotrimeric t-LINC complex and demonstrate its ability to tether telomeres. Our findings therefore reveal the heterotrimeric composition of the t-LINC complex in budding yeast and have implications for understanding variant LINC complex formation.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Citoesqueleto/metabolismo , Recombinación Homóloga , Meiosis , Proteínas de la Membrana/fisiología , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomycetales/metabolismo , Telómero/metabolismo
8.
Nucleus ; 11(1): 219-236, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32893723

RESUMEN

Cellular aging occurs as a cell loses its ability to maintain homeostasis. Aging cells eliminate damaged cellular compartments and other senescence factors via self-renewal. The mechanism that regulates cellular rejuvenation remains to be further elucidated. Using budding yeast gametogenesis as a model, we show here that the endosomal sorting complex required for transport (ESCRT) III regulates nuclear envelope organization. During gametogenesis, the nuclear pore complex (NPC) and other senescence factors are sequestered away from the prospore nuclei. We show that the LEM-domain protein Heh1 (Src1) facilitates the nuclear recruitment of ESCRT-III, which is required for meiotic NPC sequestration and nuclear envelope remodeling. Furthermore, ESCRT-III-mediated nuclear reorganization appears to be critical for gamete rejuvenation, as hindering this process curtails either directly or indirectly the replicative lifespan in gametes. Our findings demonstrate the importance of ESCRT-III in nuclear envelope remodeling and its potential role in eliminating senescence factors during gametogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas de la Membrana/genética , Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Cell Biol ; 163(5): 937-47, 2003 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-14662740

RESUMEN

Condensin is an evolutionarily conserved protein complex that helps mediate chromosome condensation and segregation in mitotic cells. Here, we show that condensin has two activities that contribute to meiotic chromosome condensation in Saccharomyces cerevisiae. One activity, common to mitosis, helps mediate axial length compaction. A second activity promotes chromosome individualization with the help of Red1 and Hop1, two meiotic specific components of axial elements. Like Red1 and Hop1, condensin is also required for efficient homologue pairing and proper processing of double strand breaks. Consistent with these functional links condensin is necessary for proper chromosomal localization of Red1 and Hop1 and the subsequent assembly of the synaptonemal complex. Finally, condensin has a Red1/Hop1-independent role in the resolution of recombination-dependent linkages between homologues in meiosis I. The existence of distinct meiotic activities of condensin (axial compaction, individualization, and resolution of recombination-dependent links) provides an important framework to understand condensin's role in both meiotic and mitotic chromosome structure and function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis/fisiología , Recombinación Genética , Saccharomyces cerevisiae/genética , Complejo Sinaptonémico/metabolismo , Núcleo Celular/metabolismo , ADN de Hongos/metabolismo , Complejos Multiproteicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas
10.
Nucleus ; 10(1): 169-180, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31313624

RESUMEN

The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteolisis , Animales , Humanos
11.
J Cell Biol ; 218(3): 839-854, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30737264

RESUMEN

The nucleus is enclosed by the inner nuclear membrane (INM) and the outer nuclear membrane (ONM). While the ONM is continuous with the endoplasmic reticulum (ER), the INM is independent and separates the nucleoplasm from the ER lumen. Turnover of ER proteins has been well characterized by the ER-associated protein degradation (ERAD) pathway, but very little is known about turnover of resident INM proteins. Here we show that the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase, regulates the degradation of Mps3, a conserved integral protein of the INM. Turnover of Mps3 requires the ubiquitin-conjugating enzyme Ubc7, but was independent of the known ERAD ubiquitin ligases Doa10 and Hrd1 as well as the recently discovered Asi1-Asi3 complex. Using a genetic approach, we have found that Cdh1, a coactivator of APC/C, modulates Mps3 stability. APC/C controls Mps3 degradation through Mps3's N terminus, which resides in the nucleoplasm and possesses two putative APC/C-dependent destruction motifs. Accumulation of Mps3 at the INM impairs nuclear morphological changes and cell division. Our findings therefore reveal an unexpected mechanism of APC/C-mediated protein degradation at the INM that coordinates nuclear morphogenesis and cell cycle progression.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , División Celular/fisiología , Proteínas de la Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Sci Rep ; 9(1): 20228, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882871

RESUMEN

The AAA + ATPase R2TP complex facilitates assembly of a number of ribonucleoprotein particles (RNPs). Although the architecture of R2TP is known, its molecular basis for acting upon multiple RNPs remains unknown. In yeast, the core subunit of the box C/D small nucleolar RNPs, Nop58p, is the target for R2TP function. In the recently observed U3 box C/D snoRNP as part of the 90 S small subunit processome, the unfolded regions of Nop58p are observed to form extensive interactions, suggesting a possible role of R2TP in stabilizing the unfolded region of Nop58p prior to its assembly. Here, we analyze the interaction between R2TP and a Maltose Binding Protein (MBP)-fused Nop58p by biophysical and yeast genetics methods. We present evidence that R2TP interacts largely with the unfolded termini of Nop58p. Our results suggest a general mechanism for R2TP to impart specificity by recognizing unfolded regions in its clients.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Desplegamiento Proteico , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
13.
Mol Biol Cell ; 29(15): 1798-1810, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847244

RESUMEN

The budding yeast centrosome, often called the spindle pole body (SPB), nucleates microtubules for chromosome segregation during cell division. An appendage, called the half bridge, attaches to one side of the SPB and regulates SPB duplication and separation. Like DNA, the SPB is duplicated only once per cell cycle. During meiosis, however, after one round of DNA replication, two rounds of SPB duplication and separation are coupled with homologue segregation in meiosis I and sister-chromatid segregation in meiosis II. How SPB duplication and separation are regulated during meiosis remains to be elucidated, and whether regulation in meiosis differs from that in mitosis is unclear. Here we show that overproduction of the half-bridge component Kar1 leads to premature SPB separation during meiosis. Furthermore, excessive Kar1 induces SPB overduplication to form supernumerary SPBs, leading to chromosome missegregation and erroneous ascospore formation. Kar1--mediated SPB duplication bypasses the requirement of dephosphorylation of Sfi1, another half-bridge component previously identified as a licensing factor. Our results therefore reveal an unexpected role of Kar1 in licensing meiotic SPB duplication and suggest a unique mechanism of SPB regulation during budding yeast meiosis.


Asunto(s)
Centrosoma/metabolismo , Meiosis , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citología , Saccharomycetales/metabolismo , Centrosoma/ultraestructura , Profase Meiótica I , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Biológicos , Dominios Proteicos , Saccharomycetales/ultraestructura , Cuerpos Polares del Huso/metabolismo , Cuerpos Polares del Huso/ultraestructura , Esporas Fúngicas/metabolismo
14.
PLoS Biol ; 2(9): E259, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15309048

RESUMEN

In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip) to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mapeo Cromosómico , Proteínas Fúngicas/genética , Técnicas Genéticas , Genoma Fúngico , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona , Cromosomas Artificiales de Levadura , Cromosomas Fúngicos/metabolismo , Biología Computacional , ADN/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactosa/metabolismo , Meiosis , Mitosis , Modelos Genéticos , Datos de Secuencia Molecular , Nocodazol/farmacología , Proteínas Nucleares/química , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Unión Proteica , Programas Informáticos , Factores de Tiempo , Transcripción Genética , Cohesinas
15.
Methods Mol Biol ; 1515: 141-149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27797078

RESUMEN

In this chapter, we describe a quantitative fluorescence-based assay of gene expression using the ratio of the reporter green fluorescence protein (GFP) to the internal red fluorescence protein (RFP) control. With this dual-color heterologous reporter assay, we have revealed cohesin-regulated genes and discovered a cis-acting DNA element, the Ty1-LTR, which interacts with cohesin and regulates gene expression during yeast meiosis. The method described here provides an effective cytological approach for quantitative analysis of global gene expression in budding yeast meiosis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Genes Reporteros/genética , Meiosis/genética , Biología Molecular/métodos , Segregación Cromosómica/genética , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Saccharomyces cerevisiae/genética , Proteína Fluorescente Roja , Cohesinas
16.
J Cell Biol ; 209(2): 247-59, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25897084

RESUMEN

Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/fisiología , Segregación Cromosómica , Meiosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiología , Huso Acromático/fisiología , Western Blotting , Células Cultivadas , Cromatografía de Afinidad , Citometría de Flujo , Microscopía Fluorescente , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Telómero/fisiología
17.
Mol Biol Cell ; 25(19): 2934-47, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25103240

RESUMEN

During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity.


Asunto(s)
Adenosina Trifosfatasas/genética , Segregación Cromosómica/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Anafase/genética , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/metabolismo , Endodesoxirribonucleasas/antagonistas & inhibidores , Inestabilidad Genómica/genética , Meiosis/genética , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Fosfatasas/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo
18.
Commun Integr Biol ; 5(1): 26-9, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22482005

RESUMEN

Centrosomes are microtubule-organizing centers that nucleate spindle microtubules during cell division. In budding yeast, the centrosome, often referred to as the spindle pole body, shares structural components with the centriole, the central core of the animal centrosome. The parental centrosome is duplicated when DNA replication takes place. Like sister chromatids tethered together by cohesin, duplicated centrosomes are linked and then separate to form the bipolar spindle necessary for chromosome segregation. Recent studies have shown that cohesin is also localized to the animal centrosome and is perhaps directly involved in engaging paired centrioles. Here we discuss the potential role of cohesin in mediating spindle-pole-body cohesion in the context of yeast meiosis. We propose that the coordination of chromosome segregation with centrosome cohesion and duplication is mediated by the antagonistic interaction between the Aurora kinase and the Polo kinase and that the role of cohesin in centrosome regulation appears to be indirect in budding yeast.

19.
Genetics ; 187(4): 1041-51, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21270391

RESUMEN

Sister-chromatid cohesion mediated by cohesin ensures proper chromosome segregation during cell division. Cohesin is also required for postreplicative DNA double-strand break repair and gene expression. The molecular mechanisms of these diverse cohesin functions remain to be elucidated. Here we report that the cohesin subunits Scc3 and Smc1 are both required for the production of the meiosis-specific subunit Rec8 in the budding yeast Saccharomyces cerevisiae. Using a genetic approach, we depleted Scc3 and Smc1 independently in cells that were undergoing meiosis. Both Scc3- and Smc1-depleted cells were inducible for meiosis, but the REC8 promoter was only marginally activated, leading to reduced levels of REC8 transcription and protein production. In contrast, the expression of MCD1, the mitotic counterpart of REC8, was not subject to Scc3 regulation in vegetative cells. We provide genetic evidence to show that sister-chromatid cohesion is not necessary for activation of REC8 gene expression. Cohesin appears to positively regulate the expression of a variety of genes during yeast meiosis. Our results suggest that the cohesin complex plays a dual role in gene regulation and sister-chromatid cohesion during meiotic differentiation in yeast.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
20.
Mol Biol Cell ; 22(12): 1985-96, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21508318

RESUMEN

To tether sister chromatids, a protein-loading complex, including Scc2, recruits cohesin to the chromosome at discrete loci. Cohesin facilitates the formation of a higher-order chromosome structure that could also influence gene expression. How cohesin directly regulates transcription remains to be further elucidated. We report that in budding yeast Scc2 is required for sister-chromatid cohesion during meiosis for two reasons. First, Scc2 is required for activating the expression of REC8, which encodes a meiosis-specific cohesin subunit; second, Scc2 is necessary for recruiting meiotic cohesin to the chromosome to generate sister-chromatid cohesion. Using a heterologous reporter assay, we have found that Scc2 increases the activity of its target promoters by recruiting cohesin to establish an upstream cohesin-associated region in a position-dependent manner. Rec8-associated meiotic cohesin is required for the full activation of the REC8 promoter, revealing that cohesin has a positive feedback on transcriptional regulation. Finally, we provide evidence that chromosomal binding of cohesin is sufficient for target-gene activation during meiosis. Our data support a noncanonical role for cohesin as a transcriptional activator during cell differentiation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Ciclo Celular , Diferenciación Celular , Proteínas Cromosómicas no Histona/genética , Meiosis , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA