Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nanobiotechnology ; 20(1): 372, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953828

RESUMEN

Although combination chemoimmunotherapy shows promising clinical results for cancer treatment, this approach is largely restricted by variable objective response rate and severe systemic adverse effects of immunotherapeutic antibody and chemotherapeutic drugs. Therefore, an in situ-formed therapeutic silk-chitosan composite scaffold is fabricated in this study to allow local release of the chemotherapeutic drug doxorubicin (DOX) and JQ1 (small molecular inhibitor used for the extraterminal protein BRD4 and bromodomain) with control release kinetics. DOX-JQ1@Gel contains a pH-degradable group that releases therapeutics in a weak acidic tumor microenvironment. The released DOX could directly kill tumor cells or lead to immunogenic cell death, thereby triggering the response of antitumor immunity. Meanwhile, chemotherapy-triggered antigen release and JQ1-mediated PD-L1 checkpoint blockade cumulatively contribute to trigger the response of antitumor immunity. Finally, the DOX-JQ1@Gel is locally injected to evaluate its synergistic cancer therapeutic effect, which is expected to improve objective response rate of immunotherapy and minimize systemic side effects.


Asunto(s)
Hidrogeles , Microambiente Tumoral , Línea Celular Tumoral , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno , Inmunoterapia/métodos , Proteínas Nucleares , Factores de Transcripción
2.
NPJ Biofilms Microbiomes ; 9(1): 27, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225687

RESUMEN

Tibetan pigs (TPs) can adapt to the extreme environments in the Tibetan plateau implicated by their self-genome signals, but little is known about roles of the gut microbiota in the host adaption. Here, we reconstructed 8210 metagenome-assembled genomes from TPs (n = 65) living in high-altitude and low-altitude captive pigs (87 from China-CPs and 200 from Europe-EPs) that were clustered into 1050 species-level genome bins (SGBs) at the threshold of 95% average nucleotide identity. 73.47% of SGBs represented new species. The gut microbial community structure analysis based on 1,048 SGBs showed that TPs was significantly different from low-altitude captive pigs. TP-associated SGBs enabled to digest multiple complex polysaccharides, including cellulose, hemicellulose, chitin and pectin. Especially, we found TPs showed the most common enrichment of phyla Fibrobacterota and Elusimicrobia, which were involved in the productions of short- and medium-chain fatty acids (acetic acid, butanoate and propanoate; octanomic, decanoic and dodecanoic acids), as well as in the biosynthesis of lactate, 20 essential amino acids, multiple B vitamins (B1, B2, B3, B5, B7 and B9) and cofactors. Unexpectedly, Fibrobacterota solely showed powerful metabolic capacity, including the synthesis of acetic acid, alanine, histidine, arginine, tryptophan, serine, threonine, valine, B2, B5, B9, heme and tetrahydrofolate. These metabolites might contribute to host adaptation to high-altitude, such as energy harvesting and resistance against hypoxia and ultraviolet radiation. This study provides insights into understanding the role of gut microbiome played in mammalian high-altitude adaptation and discovers some potential microbes as probiotics for improving animal health.


Asunto(s)
Microbioma Gastrointestinal , Porcinos , Animales , Tibet , Rayos Ultravioleta , Aclimatación , Ácido Acético , Ambientes Extremos , Mamíferos
3.
NPJ Biofilms Microbiomes ; 9(1): 29, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258543

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease, had no approved pharmacological agents yet. Obeticholic acid (OCA), a novel bile acid derivative, was demonstrated to ameliorate NAFLD-related manifestations. Regarding the role of gut-liver axis in liver disease development, this study aimed to explore the potential role of gut microbiota in the treatment of OCA in NAFLD mice induced by the high-fat diet (HFD). Antibiotic-induced microbiome depletion (AIMD) and fecal microbiota transplantation (FMT) confirmed the critical role of gut microbiota in OCA treatment for NAFLD by effectively alleviating histopathological lesions and restoring liver function impaired by HFD. Metagenomic analysis indicated that OCA intervention in HFD mice remarkably increased the abundance of Akkermansia muciniphila, Bifidobacterium spp., Bacteroides spp., Alistipes spp., Lactobacillus spp., Streptococcus thermophilus, and Parasutterella excrementihominis. Targeted metabolomics analysis indicated that OCA could modulate host bile acids pool by reducing levels of serum hydrophobic cholic acid (CA) and chenodeoxycholic acid (CDCA), and increasing levels of serum-conjugated bile acids, such as taurodeoxycholic acid (TDCA) and tauroursodesoxycholic acid (TUDCA) in the HFD-fed mice. Strong correlations were observed between differentially abundant microbes and the shifted bile acids. Furthermore, bacteria enriched by OCA intervention exhibited much greater potential in encoding 7alpha-hydroxysteroid dehydrogenase (7α-HSDs) producing secondary bile acids rather than bile salt hydrolases (BSHs) mainly responsible for primary bile acid deconjugation. In conclusion, this study demonstrated that OCA intervention altered gut microbiota composition with specially enriched gut microbes modulating host bile acids, thus effectively alleviating NAFLD in the mice.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico , Ácidos y Sales Biliares
4.
mSystems ; 7(4): e0151221, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35758593

RESUMEN

The gut microbiome has significant effects on healthy aging and aging-related diseases, whether in humans or nonhuman primates. However, little is known about the divergence and convergence of gut microbial diversity between humans and nonhuman primates during aging, which limits their applicability for studying the gut microbiome's role in human health and aging. Here, we performed 16S rRNA gene sequencing analysis for captive rhesus macaques (Macaca mulatta) and compared this data set with other freely available gut microbial data sets containing four human populations (Chinese, Japanese, Italian, and British) and two nonhuman primates (wild lemurs [Lemur catta] and wild chimpanzees [Pan troglodytes]). Based on the consistent V4 region of the 16S rRNA gene, beta diversity analysis suggested significantly separated gut microbial communities associated with host backgrounds of seven host groups, but within each group, significant gut microbial divergences were observed, and indicator bacterial genera were identified as associated with aging. We further discovered six common anti-inflammatory gut bacteria (Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia) that had butyrate-producing potentials suggested by pangenomic analysis and that showed similar dynamic changes in at least two selected host groups during aging, independent of distinct host backgrounds. Finally, we found striking age-related changes in 66 plasma metabolites in macaques. Two highly changed metabolites, hydroxyproline and leucine, enriched in adult macaques were significantly and positively correlated with Prevotella and Prevotellamassilia. Furthermore, genus-level pangenome analysis suggested that those six common indicator bacteria can synthesize leucine and arginine as hydroxyproline and proline precursors in both humans and macaques. IMPORTANCE This study provides the first comprehensive investigation of age patterning of gut microbiota of four human populations and three nonhuman primates and found that Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia may be common antiaging microbial markers in both humans and nonhuman primates due to their potential metabolic capabilities for host health benefits. Our results also provide key support for using macaques as animal models in studies of the gut microbiome's role during human aging.


Asunto(s)
Microbioma Gastrointestinal , Animales , Adulto , Humanos , Microbioma Gastrointestinal/genética , Macaca mulatta/genética , ARN Ribosómico 16S/genética , Hidroxiprolina , Leucina
5.
Small Methods ; 6(4): e2200026, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35233980

RESUMEN

Commercial graphite, as an attractive cathode material, has been extensively applied in rechargeable aluminum batteries. However, low capacity and complex cathode preparation procedures limit its further development. Herein, graphite nanosheets as cathode of aluminum battery have been prepared by a novel pencil-drawing strategy, which shows superior capacity of 96 mAh g-1 and excellent stability with almost 100% capacity retention after 2000 cycles at a current density of 0.5 A g-1 . By increasing charge-discharge current density to 2 A g-1 , the battery also exhibits a high capacity of 72 mAh g-1 and retains 90% after 6000 cycles. Furthermore, a stage 3 anion intercalation/deintercalation mechanism has been proposed according to in situ X-ray diffraction and ex situ characterization techniques. This work provides a controllable method for developing a graphite nanosheets cathode with a simplified process and contributes to the development of other kinds of energy storage devices.

6.
ACS Biomater Sci Eng ; 8(12): 5329-5337, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36383732

RESUMEN

Osteosarcoma is a malignant osteogenic tumor with a high metastatic rate commonly occurring in adolescents. Although radiotherapy is applied to treat unresectable osteosarcoma with radiation resistance, a high dose of radiotherapy is required, which may weaken the immune microenvironment. Therefore, there is an urgent need to develop novel agents to maximize the radiotherapeutic effects by eliciting immune activation effects. In this study, we synthesized therapeutic gadolinium-based metal-bisphosphonate nanoparticles (NPs) for osteosarcoma treatment that can be combined with radiotherapy. The gadolinium ion (Gd) was chelated with zoledronic acid (Zol), a commonly used drug to prevent/treat osteoporosis or bone metastases from advanced cancers, and stabilized by ovalbumin (OVA) to produce OVA-GdZol NPs. OVA-GdZol NPs were internalized into K7M2 osteosarcoma cells, showing a high sensitization effect under X-ray irradiation. Cell pretreatment of OVA-GdZol NPs significantly enhanced the radiation therapeutic effect in vitro by reducing the cell colonies and increased the signal of γH2AX-positive cells. More importantly, OVA-GdZol NPs promoted the maturation of bone marrow-derived dendritic cells (BMDCs) and M1 polarization of macrophages. The inhibitory effect on K7M2 osteosarcoma of OVA-GdZol NPs and X-ray radiation was evident, indicated by a significantly reduced tumor volume, high survival rate, and decreased lung metastasis. Meanwhile, both innate and adaptive immune systems were activated to exert a strong antitumor effect. The above results highly suggest that OVA-GdZol NPs serve as both radiosensitizers and immune adjuvants, suitable for the sequential combination of vaccination and radiotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Adolescente , Gadolinio , Difosfonatos/uso terapéutico , Nanopartículas/uso terapéutico , Ovalbúmina , Microambiente Tumoral
7.
Microbiol Spectr ; 10(6): e0280422, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36301099

RESUMEN

Coronary artery disease (CAD) is one of leading causes of mortality worldwide. Studies on roles that the gut microbiota plays in development of atherosclerosis or acute myocardial infarction (AMI) have been widely reported. However, the gut microbiota is affected by many factors, including age, body mass index (BMI), and hypertension, that lead to high CAD risk. However, the associations between gut microbiota and CAD development or other CAD risk factors remain unexplored. Here, we performed a 16S RNA gene sequencing analysis of 306 fecal samples collected from patients with mild coronary stenosis (MCS; n = 36), stable angina (SA; n = 91), unstable angina (UA; n = 48), and acute myocardial infarction (AMI; n = 66) and 65 non-CAD controls. Using a noise-corrected method based on principal-component analysis (PCA) and the random forest algorithm, we identified the interference with gut microbial profiling of multiple factors (including age, gender, BMI, and hypertension) that potentially contributed significantly to the development of CAD. After correction of noise interference from certain interfering factors, we found consistent indicator microbiota organisms (such as Vampirovibrio, Ruminococcus, and Eisenbergiella) associated with the presence of MCS, SA, and AMI. Establishment of a diagnostic model revealed better performance in early CAD than clinical indexes with indicator microbes. Furthermore, indicator microbes can improve the accuracy of clinical indexes for the diagnosis of AMI. Additionally, we found that the microbial indicators of AMI Sporobacter and Eisenbergiella showed consistent positive and negative correlations to the clinical indexes creatine kinase (CK) and hemoglobin (Hb), respectively. As a control indicator of AMI, Dorea was negatively correlated with CK but positively correlated with Hb. IMPORTANCE Our study discovered the effect of confounding factors on gut microbial variations and identified gut microbial indicators possibly associated with the CAD development after noise correction. Our discovered indicator microbes may have potential for diagnosis or therapy of cardiovascular disorders.


Asunto(s)
Enfermedad de la Arteria Coronaria , Microbioma Gastrointestinal , Hipertensión , Microbiota , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Microbioma Gastrointestinal/genética
8.
Animals (Basel) ; 11(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34359244

RESUMEN

This study aimed to evaluate the effects of Saccharomyces cerevisiae, and their combination on rumen fermentation and growth performance of heat-stressed goats. Twelve heat-stressed goats (20.21 ± 2.30 kg) were divided equally into four groups: control group (CG, fed the basal diet, Saccharomyces cerevisiae supplemented group (SC, 0.60% Saccharomyces cerevisiae added to the basal diet), Clostridium butyricum supplemented group (CB, 0.05% Clostridium butyricum added to the basal diet), and their combination supplemented group (COM 0.60% Saccharomyces cerevisiae and 0.05% Clostridium butyricum added to the basal diet) and were assigned to a 4 × 3 incomplete Latin square design. The rumen fluid and feces were collected for fermentation parameters and feed digestibility analysis, and animal growth performance was also assessed during all the experiment periods. The results showed that rumen pH, rumen cellulolytic enzymes (avicelase, CMCaes, cellobiase, and xylanase) activities, and the concentrations of rumen total volatile fatty acid (TVFA), acetic acid, and propionic acid were significantly increased with Saccharomyces cerevisiae, Clostridium butyricum, and their combination supplementation (p < 0.05). Besides, the dry matter intake (DMI), average daily gain (ADG), and the digestibility of dry matter (DM), neutral detergent fiber (NDF), and acidic detergent fiber (ADF) were significantly increased (p < 0.05) with supplemented these probiotics. However, the ammonia nitrogen (NH3-N) concentration only significantly increased in CB and A/P ratio (acetic acid to propionic acid ratio) only significantly increased in SC and CB. These results indicated that the supplementation with these probiotics could ameliorate rumen fermentation and growth performance of heat-stressed goats.

9.
Microbiome ; 9(1): 229, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814938

RESUMEN

BACKGROUND: Carbohydrate-active enzymes (CAZymes) form the most widespread and structurally diverse set of enzymes involved in the breakdown, biosynthesis, or modification of lignocellulose that can be found in living organisms. However, the structural diversity of CAZymes has rendered the targeted discovery of novel enzymes extremely challenging, as these proteins catalyze many different chemical reactions and are sourced by a vast array of microbes. Consequently, many uncharacterized members of CAZyme families of interest have been overlooked by current methodologies (e.g., metagenomic screening) used to discover lignocellulolytic enzymes. RESULTS: In the present study, we combined phenotype-based selective pressure on the rumen microbiota with targeted functional profiling to guide the discovery of unknown CAZymes. In this study, we found 61 families of glycoside hydrolases (GH) (out of 182 CAZymes) from protein sequences deposited in the CAZy database-currently associated with more than 20,324 microbial genomes. Phenotype-based selective pressure on the rumen microbiome showed that lignocellulolytic bacteria (e.g., Fibrobacter succinogenes, Butyrivibrio proteoclasticus) and three GH families (e.g., GH11, GH13, GH45) exhibited an increased relative abundance in the rumen of feed efficient cattle when compared to their inefficient counterparts. These results paved the way for the application of targeted functional profiling to screen members of the GH11 and GH45 families against a de novo protein reference database comprised of 1184 uncharacterized enzymes, which led to the identification of 18 putative xylanases (GH11) and three putative endoglucanases (GH45). The biochemical proof of the xylanolytic activity of the newly discovered enzyme validated the computational simulations and demonstrated the stability of the most abundant xylanase. CONCLUSIONS: These findings contribute to the discovery of novel enzymes for the breakdown, biosynthesis, or modification of lignocellulose and demonstrate that the rumen microbiome is a source of promising enzyme candidates for the biotechnology industry. The combined approaches conceptualized in this study can be adapted to any microbial environment, provided that the targeted microbiome is easy to manipulate and facilitates enrichment for the microbes of interest. Video Abstract.


Asunto(s)
Microbiota , Rumen , Animales , Bovinos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Metagenoma , Metagenómica , Rumen/microbiología
10.
Microorganisms ; 8(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751619

RESUMEN

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.

11.
J Pharm Pharmacol ; 67(9): 1240-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25880347

RESUMEN

OBJECTIVES: S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. METHODS: enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. KEY FINDINGS: The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. CONCLUSIONS: Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response.


Asunto(s)
Hipoxia/metabolismo , Inflamación/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas S100/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Regulación hacia Abajo/fisiología , Interleucinas/metabolismo , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA