Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Immunol ; 40: 143-167, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34990209

RESUMEN

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome-neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Encéfalo , Disbiosis , Humanos , Neuroinmunomodulación
2.
Immunity ; 54(1): 9-11, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440138

RESUMEN

Many studies highlight direct interactions between immune cells and enteric neurons, but whether immune signals can indirectly modulate enteric function through neurotransmitter regulation is poorly understood. In this issue of Immunity, Chen et al. reveal how IL-33 induces intestinal serotonin to promote gut motility.


Asunto(s)
Interleucina-33 , Serotonina , Emociones , Intestino Delgado , Neuronas
3.
Rapid Commun Mass Spectrom ; 32(6): 480-488, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29334584

RESUMEN

RATIONALE: A novel benzimidazole compound ZLN005 was previously identified as a transcriptional activator of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in certain metabolic tissues. Upregulation of PGC-1α by ZLN005 has been shown to have a beneficial effect in a diabetic mouse model and in a coronary artery disease model in vitro. ZLN005 could also have therapeutic potential in neurodegenerative diseases involving down-regulation of PGC-1α. Given the phenotypic efficacy of ZLN005 in several animal models of human disease, its metabolic profile was investigated to guide the development of novel therapeutics using ZLN005 as the lead compound. METHODS: ZLN005 was incubated with both rat and human liver microsomes and S9 fractions to identify in vitro metabolites. Urine from rats dosed with ZLN005 was used to identify in vivo metabolites. Extracted metabolites were analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using a hybrid linear ion trap triple quadrupole mass spectrometer in full scan, enhanced product ion scan, neutral loss scan and precursor scan modes. Metabolites in plasma and brain of ZLN005-treated rats were also profiled using multiple reaction monitoring. RESULTS: Identified in vitro transformations of ZLN005 include mono- and dihydroxylation, further oxidation to carboxylic acids, and mono-O-glucuronide and sulfate conjugation to hydroxy ZLN005 as well as glutathione conjugation. Identified in vivo metabolites are mainly glucuronide and sulfate conjugates of dihydroxyl, carboxyl, and hydroxy acid of the parent compound. The parent compound as well as several major phase I metabolites were found in rat plasma and brain. CONCLUSIONS: Using both in vitro and in vivo methods, we elucidated the metabolic pathway of ZLN005. Phase I metabolites with hydroxylation and carboxylation, as well as phase II metabolites with glucuronide, sulfate and glutathione conjugation, were identified.

4.
Commun Biol ; 7(1): 570, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750146

RESUMEN

Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratones , Masculino , Femenino , Endofenotipos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Síntomas Prodrómicos , Modelos Animales de Enfermedad , Ratones Transgénicos , Humanos , Factores Sexuales , Inflamación/metabolismo , Inflamación/genética , Ratones Endogámicos C57BL , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA