Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Opt Express ; 31(8): 12487-12496, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157407

RESUMEN

Chip-scale photonic systems that manipulate free-space emission have recently attracted attention for applications such as free-space optical communications and solid-state LiDAR. Silicon photonics, as a leading platform for chip-scale integration, needs to offer more versatile control of free-space emission. Here we integrate metasurfaces on silicon photonic waveguides to generate free-space emission with controlled phase and amplitude profiles. We demonstrate experimentally structured beams, including a focused Gaussian beam and a Hermite-Gaussian TEM10 beam, as well as holographic image projections. Our approach is monolithic and CMOS-compatible. The simultaneous phase and amplitude control enable more faithful generation of structured beams and speckle-reduced projection of holographic images.

2.
Opt Express ; 30(12): 21184-21194, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224843

RESUMEN

High pattern fidelity is paramount to the performance of metalenses and metasurfaces, but is difficult to achieve using economic photolithography technologies due to low resolutions and limited process windows of diverse subwavelength structures. These hurdles can be overcome by photomask sizing or reshaping, also known as optical proximity correction (OPC). However, the lithographic simulators critical to model-based OPC require precise calibration and have not yet been specifically developed for metasurface patterning. Here, we demonstrate an accurate lithographic model based on Hopkin's image formulation and fully convolutional networks (FCN) to control the critical dimension (CD) patterning of a near-infrared (NIR) metalens through a distributed OPC flow using i-line photolithography. The lithographic model achieves an average ΔCD/CD = 1.69% due to process variations. The model-based OPC successfully produces the 260 nm CD in a metalens layout, which corresponds to a lithographic constant k1 of 0.46 and is primarily limited by the resolution of the photoresist. Consequently, our fabricated NIR metalens with a diameter of 1.5 mm and numerical aperture (NA) of 0.45 achieves a measured focusing efficiency of 64%, which is close to the calculated value of 69% and among the highest reported values using i-line photolithography.

3.
Opt Express ; 27(25): 36046-36058, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31873391

RESUMEN

Photon management plays a vital role in the power conversion efficiency of III-V semiconductor solar cells. However, the photon recycling characteristics of GaAs-based multi-quantum-well (MQW) solar cells employed different optical designs had yet been fully explored. In this work, we investigate the impact of the spectrally selective filter (SSF) and distributed Bragg reflector (DBR) on the photovoltaic characteristics of single-junction, strain-balanced In0.1Ga0.9As/ GaAs0.85P0.15 MQW solar cells. Specifically, the SSFs with cutoff wavelengths of 880, 910, and 940 nm are designed and implemented on MQW solar cells with and without the incorporation of a rear DBR. Photon confinement in the vertical direction is verified based on the characterizations of reflectance, electroluminescence, and external quantum efficiency. We show that the photon confinement reduces the saturation current density, up to 26 times and 3 times for the 880 nm SSF-MQW and SSF-MQW-DBR devices, respectively, compared to that of the 940 nm devices. Furthermore, by comparing the SSF-MQW-DBR solar cells under simulated one-sun and concentrated illumination conditions, the open-circuit voltage exhibits a maximal net increase for the 910 nm SSF due to tradeoff between the short-circuit and saturation current density. The proposed SSF design may offer a viable approach to boost the performance of GaAs-based MQW solar cells.

4.
Opt Express ; 24(10): A832-45, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409956

RESUMEN

In this work, we present the result of nickel (Ni)-based metamaterial perfect absorbers (MPA) with ultra-broadband close-to-one absorbance. The experimental broadband characteristic is significantly improved over the past effort on metamaterial perfect absorbers. An in-depth physical picture and quantitative analysis is presented to reveal the physical origin of its ultrabroadband nature. The key constituent is the cancellation of the reflected wave using ultra-thin, moderate-extinction metallic films. The ultra-thin metal thickness can reduce the reflection as the optical field penetrates through the metallic films. This leads to minimal reflection at each ultra-thin metal layer, and light is penetrating into the Ni/SiO2 stacking. More intuitively, when the layer thickness is much smaller than the photon wavelength, the layer is essentially invisible to the photons. This results in absorption in the metal thin-film through penetration while there is minimal reflection by the metal film. More importantly, the experimental evidence for omni-directionality and polarization-insensitivity are established for the proposed design. Detailed measurement is conducted. Due to the ultrathin metal layers and the satisfactory tolerance in dielectric thickness, the broadband absorption has minimal degradation at oblique incidence. Such a wide angle, polarization-insensitive, ultra-broadband MPA can be very promising in the future, and the optical physics using sub-skin-depth metal film can also facilitate miniaturized high-performance nano-photonic devices.

5.
Opt Express ; 24(2): A414-23, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832593

RESUMEN

In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq(3)) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq(3) resulting in a uniform thin film with a root-mean-square roughness < 0.2nm is demonstrated for the first time. Both devices with the Alq(3) and OXD-7 interlayers show notable enhancement in the open-circuit voltage and fill-factor, leading to a net efficiency increase by over 2% from the reference, up to 11.8% and 12.5% respectively. The capacitance-voltage characteristics confirm the role of the small-molecule interlayers resembling a thin interfacial oxide layer for the Al-Si Schottky barrier to enhance the built-in potential and facilitate charge transport. Moreover, the Alq(3) interlayer in optimized devices exhibits isolated phases with a large surface roughness, in contrast to the OXD-7 which forms a continuous uniform thin film. The distinct morphological differences between the two interlayers further suggest different enhancement mechanisms and hence offer versatile functionalities to the advent of hybrid organic-silicon photovoltaics.

6.
Nanotechnology ; 27(42): 425401, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27632684

RESUMEN

In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

7.
Opt Express ; 23(24): A1434-41, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698792

RESUMEN

This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW solar cells. As a result, the PCE is boosted from 0.63% to 1.11% under AM1.5G illumination. Based on simulation and experimental results, the enhanced PCE can be attributed to the improved carrier collection in GQW caused by the reduction of potential barriers and piezoelectric polarization induced fields near the p-GaN layer. The presented concept paves a way toward highly efficient InGaN-based solar cells and other GaN-related MQW devices.

8.
Opt Express ; 23(25): 32504-15, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26699040

RESUMEN

Colloidal quantum dots which can emit red, green, and blue colors are incorporated with a micro-LED array to demonstrate a feasible choice for future display technology. The pitch of the micro-LED array is 40 µm, which is sufficient for high-resolution screen applications. The method that was used to spray the quantum dots in such tight space is called Aerosol Jet technology which uses atomizer and gas flow control to obtain uniform and controlled narrow spots. The ultra-violet LEDs are used in the array to excite the red, green and blue quantum dots on the top surface. To increase the utilization of the UV photons, a layer of distributed Bragg reflector was laid down on the device to reflect most of the leaked UV photons back to the quantum dot layers. With this mechanism, the enhanced luminous flux is 194% (blue), 173% (green) and 183% (red) more than that of the samples without the reflector. The luminous efficacy of radiation (LER) was measured under various currents and a value of 165 lm/Watt was recorded.

9.
Opt Express ; 23(11): 14344-50, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072798

RESUMEN

The photodesorption kinetics of graphene with various UV laser power is studied by conductance response. Analytical expressions of the power-dependent photodesorption kinetics of graphene in ambience are derived. The photodesorption time constant τd, steady current, and magnitude of modulation current, can be expressed as functions of the adsorption time constant τa, desorption cross section σ, and photon flux density. Under illumination the steady occupation ratio of adsorbed O2 on graphene is equal to τd/τa. It is suggested that the photodesorption of O2 on graphene is attributed the injection of photogenerated hot electrons and is restricted by the density of antibonding states of O2.

10.
Opt Express ; 23(3): A106-17, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836236

RESUMEN

Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

11.
Opt Express ; 23(7): A204-10, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968786

RESUMEN

The hybrid white light-emitting didoes (LED) with polyfluoren (PFO) polymer and quantum dot (QD) was investigated using dispensing method at the different correlated color temperature (CCT) for cool and warm color temperature. This result indicates that the hybrid white LED device has the higher luminous efficiency than the convention one, which could be attributed to the increased utilization rate of the UV light. Furthermore, the CIE 1931 coordinate of high quality white hybrid LED with different CCT range from 3000K to 9000K is demonstrated. Consequently, the angular-dependent CCT and the thermal issue of the hybrid white LED device were also analyzed in this study.

12.
Opt Express ; 22 Suppl 2: A396-401, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24922249

RESUMEN

We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.

13.
Opt Express ; 22(3): 2860-7, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663578

RESUMEN

Because of the Sun's movement across the sky, broadband and omnidirectional light harvesting is a major development in photovoltaic technology. This study reports the fabrication and characterization of flexible-textured polydimethylsiloxane (PDMS) film on Cu(In,Ga)Se2 (CIGS) solar cells, which is one of the simplest and cheapest peel-off processes for fabricating a three-dimensional structure. A cell containing a textured PDMS film enhanced the short-circuit current density from 22.12 to 23.93 mA/cm2 in a simulated one-sun scenario. The omnidirectional antireflection of CIGS solar cells containing various PDMS films is also investigated. This study uses an angle-resolved reflectance spectroscope to investigate the omnidirectional and broadband optical properties of the proposed PDMS film. This improvement in light harvesting is attributable to the scattering of the PDMS film and the gradual refractive index profile between the PDMS microstructures and air. The flexible-textured PDMS film is suitable for creating an antireflective coating for a diverse range of photovoltaic devices.

14.
Opt Express ; 22 Suppl 5: A1334-42, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25322188

RESUMEN

In this study, the design and fabrication schemes of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes are presented. Compared to typical front-side illuminated solar cells, the improvements of open-circuit voltage (V(oc)) from 1.88 to 1.94 V and short-circuit current density (J(sc)) from 0.84 to 1.02 mA/cm(2) are observed. Most significantly, the back-side illuminated InGaN/GaN solar cells exhibit an extremely high fill factor up to 85.5%, leading to a conversion efficiency of 1.69% from 0.66% of typical front-side illuminated solar cells under air mass 1.5 global illuminations. Moreover, the effects of bottom Bragg mirrors on the photovoltaic characteristics of back-side illuminated solar cells are studied by an advanced simulation program. The results show that the J(sc) could further be improved with a factor of 10% from the original back-side illuminated solar cell by the structure optimization of bottom Bragg mirrors.

15.
Opt Express ; 22 Suppl 2: A295-300, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24922238

RESUMEN

Biomimetic nanostructures have shown to enhance the optical absorption of Ga0.5In0.5P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO2) on top of titanium dioxide (TiO2) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO2 layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

16.
Opt Express ; 22(5): A295-300, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24800285

RESUMEN

Biomimetic nanostructures have shown to enhance the optical absorption of Ga(0.5)In(0.5)P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO(2)) on top of titanium dioxide (TiO(2)) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO(2) layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

17.
Opt Lett ; 39(8): 2511-3, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24979031

RESUMEN

Indium-tin-oxide nanowhiskers were employed as transparent electrodes in a liquid-crystal terahertz phase shifter. Transmittance of the device was as high as ∼75%. Phase shift exceeding π/2 at 1.0 THz is achieved in a ∼500 µm-thick cell. The driving voltage required for the device operating as a quarter-wave plate was as low as 17.68 V (rms), an improvement of nearly an order of magnitude over previous work.


Asunto(s)
Nanopartículas del Metal/química , Compuestos de Estaño/química , Electricidad , Electrodos , Cristales Líquidos , Dispositivos Ópticos , Fenómenos Ópticos
18.
J Nanosci Nanotechnol ; 14(2): 1051-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24749412

RESUMEN

In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.


Asunto(s)
Compuestos de Cadmio/química , Compuestos de Cadmio/efectos de la radiación , Suministros de Energía Eléctrica , Nanotecnología/instrumentación , Puntos Cuánticos , Compuestos de Selenio/química , Compuestos de Selenio/efectos de la radiación , Energía Solar , Transferencia de Energía/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo
19.
Sci Rep ; 14(1): 5216, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433232

RESUMEN

P91 steel is an important steam pipe for ultra-supercritical power plants due to its excellent creep strength, which generally has a design life of 100,000 h. Here, we found a significant aberrant decrease in the creep rupture life of a main steam pipe elbow after only 20,000 h of service. The microstructure in the aberrant piece exhibited a decomposition of martensitic lath into blocky ferrite due to recrystallization and accumulation of M23C6 as well as formation of the Laves phase along the prior austenitic grain boundaries, resulting in the decrease of hardness that no long meet ASME standard requirement. The creep testing of the P91 piece at 550-600 °C and 85-140 MPa shows that the influence of temperature on the cavity formation and cracking is greater than that of the applied stress. The rupture life is nearly two orders of magnitude shorter than the normal P91, attributing to the creep damage of the subgrain growth, M23C6 and Laves phase coarsening (aggregation approaching 3.4 µm). The residual life of the aberrant piece was evaluated to be 53,353 h based on the Larson-Miller parameter, which is much shorter than the design life, suggesting the safety operation of the elbow area should be paid more attention during the afterward service periods. P91 steel, main steam pipe elbow, aberrant microstructure, service degradation, creep life prediction.

20.
Opt Express ; 21(14): 16670-82, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23938519

RESUMEN

Indium-tin-oxide (ITO) nanorods (NRs) and nanowhiskers (NWhs) were fabricated by an electron-beam glancing-angle deposition (GLAD) system. These nanomaterials are of interests as transparent conducting electrodes in various devices. Two terahertz (THz) time-domain spectrometers (TDS) with combined spectral coverage from 0.15 to 9.00 THz were used. These allow accurate determination of the optical and electrical properties of such ITO nanomaterials in the frequency range from 0.20 to 4.00 THz. Together with Fourier transform infrared spectroscopic (FTIR) measurements, we found that the THz and far-infrared transmittance of these nanomaterials can be as high as 70% up to 15 THz, as opposed to about 9% for sputtered ITO thin films. The complex conductivities of ITO NRs, NWhs as well films are well fitted by the Drude-Smith model. Taking into account that the volume filling factors of both type of nanomaterials are nearly same, mobilities, and DC conductivities of ITO NWhs are higher than those of NRs due to less severe carrier localization effects in the former. On the other hand, mobilities of sputtered ITO thin films are poorer than ITO nanomaterials because of larger concentration of dopant ions in films, which causes stronger carrier scattering. We note further that consideration of the extreme values of Re{σ} and Im{σ} as well the inflection points, which are functions of the carrier scattering time (τ) and the expectation value of cosine of the scattering angle (γ), provide additional criteria for accessing the accuracy of the extraction of electrical parameters of non-Drude-like materials using THz-TDS. Our studies so far indicate ITO NWhs with heights of ~1000 nm show outstanding transmittance and good electrical characteristics for applications such as transparent conducting electrodes of THz Devices.


Asunto(s)
Nanopartículas/química , Resonancia por Plasmón de Superficie/métodos , Compuestos de Estaño/química , Conductividad Eléctrica , Luz , Ensayo de Materiales , Nanopartículas/efectos de la radiación , Radiación Terahertz , Compuestos de Estaño/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA