Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ophthalmic Physiol Opt ; 42(1): 195-204, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747032

RESUMEN

PURPOSE: Mild to moderate vision loss affects many children and can negatively impact a child's early literacy and academic achievement. Nevertheless, there is no consensus on which factors present in early childhood indicate the need for long-term ophthalmic follow up, particularly in children with a history of perinatal adversity. This study identified the relationship between visual, cognitive, motor and demographic factors at 2 years of age and visual acuity (VA) and stereoacuity at 4.5 years of age. METHODS: Five hundred sixteen children identified as being at risk of neonatal hypoglycaemia were recruited soon after birth. At 2 years of age, binocular VA, stereoacuity and non-cycloplegic refraction were measured and a clinical neuro-developmental assessment with the Bayley Scales of Infant Development III (BSID-III) was conducted by a trained examiner. Monocular VA and stereoacuity were measured at 4.5 years of age. RESULTS: Three hundred twenty-eight children completed both the 2 and 4.5 year vision and neurodevelopmental assessments. Multiple linear regression showed oblique astigmatism and motor function at 2 years were significantly associated with VA at 4.5 years of age, while spherical equivalent refraction, motor scores and stereoacuity at 2 years were significantly associated with stereoacuity at 4.5 years of age. BSID-III motor scores had the best sensitivity (81.8%) and specificity (51.5%) for identifying impaired stereoacuity at 4.5 years. However, all measures at 2 years were poorly associated with VA at 4.5 years old. CONCLUSION: Vision and neurodevelopmental measures at 2 years were poorly associated with visual function at 4.5 years of age. However, lower scores on tests of motor function at 2 years may be associated with vision abnormalities, particularly reduced stereopsis, at 4.5 years of age and referral for comprehensive vision assessment for these children may be warranted.


Asunto(s)
Hipoglucemia , Visión Binocular , Niño , Preescolar , Percepción de Profundidad , Humanos , Hipoglucemia/complicaciones , Hipoglucemia/diagnóstico , Lactante , Recién Nacido , Pruebas de Visión , Agudeza Visual
2.
Neuron ; 49(6): 845-60, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16543133

RESUMEN

Cerebellar long-term depression (LTD) is a major form of synaptic plasticity that is thought to be critical for certain types of motor learning. Phosphorylation of the AMPA receptor subunit GluR2 on serine-880 as well as interaction of GluR2 with PICK1 have been suggested to contribute to the endocytic removal of postsynaptic AMPA receptors during LTD. Here, we show that targeted mutation of PICK1, the GluR2 C-terminal PDZ ligand, or the GluR2 PKC phosphorylation site eliminates cerebellar LTD in mice. LTD can be rescued in cerebellar cultures from mice lacking PICK1 by transfection of wild-type PICK1 but not by a PDZ mutant or a BAR domain mutant deficient in lipid binding, indicating the importance of these domains in PICK1 function. These results demonstrate that PICK1-GluR2 PDZ-based interactions and GluR2 phosphorylation are required for LTD expression in the cerebellum.


Asunto(s)
Proteínas Portadoras/metabolismo , Cerebelo/citología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/genética , Mutación , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Receptores AMPA/genética , Factores de Edad , Alanina/genética , Animales , Animales Recién Nacidos , Western Blotting/métodos , Proteínas de Ciclo Celular , Células Cultivadas , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Regulación de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Inmunohistoquímica/métodos , Técnicas In Vitro , Lípidos/análisis , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de la radiación , Lisina/genética , Ratones , Ratones Noqueados , Ratones Mutantes , Microscopía Inmunoelectrónica/métodos , Mutagénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Neuronas/ultraestructura , Proteínas Nucleares/deficiencia , Técnicas de Placa-Clamp/métodos , Ésteres del Forbol/farmacología , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Transfección/métodos
3.
Neuron ; 45(6): 903-15, 2005 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15797551

RESUMEN

A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable AMPA receptor plasticity (CARP), we examined whether AMPA receptor exchange was mediated by subunit-specific protein-protein interactions. We found that two GluR2-interacting proteins, the PDZ domain-containing Protein interacting with C kinase (PICK1) and N-ethylmaleimide sensitive fusion protein (NSF), are specifically required for CARP. Furthermore, PICK1, but not NSF, regulates the formation of extrasynaptic plasma membrane pools of GluR2-containing receptors that may be laterally mobilized into synapses during CARP. These results demonstrate that PICK1 and NSF dynamically regulate the synaptic delivery of GluR2-containing receptors during CARP and thus regulate the calcium permeability of AMPA receptors at excitatory synapses.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Portadoras/metabolismo , Plasticidad Neuronal/fisiología , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Proteínas del Citoesqueleto , Dinaminas/metabolismo , Endocitosis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Sensibles a N-Etilmaleimida , Proteínas Nucleares/genética , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Agregación de Receptores/fisiología , Receptores AMPA/genética
4.
Tumour Biol ; 30(2): 80-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19407487

RESUMEN

AMP-activated protein kinase (AMPK) is a critical energy-balancing sensor in the regulation of cellular metabolism in response to external stimuli. Emerging evidence has suggested that AMPK is a potential therapeutic target for human cancers. AICAR, one of the pharmacological AMPK activators, has been widely used to suppress cancer cell growth through activation of LKB1, an upstream kinase of AMPK. However, frequent mutations and deletions of LKB1 found in some cancer cells limit the application of AICAR as an efficient therapeutic drug. Here we show that an alternative pharmacological AMPK activator, A23187, was able to inhibit cervical cancer cell growth through activation of Ca(2+)/calmodulin-dependent protein kinase kinase beta, another upstream kinase of AMPK. Using cervical cancer cell models, we found that HeLa (LKB1-deficient cell) responded less to the anti-proliferative effect exerted by AICAR treatment (p < 0.001) compared with CaSki and C41 (LKB1-expressing cells). Conversely, the anti-proliferative effect was increased significantly in HeLa but not in CaSki and C41 cells under treatment by A23187 (p < 0.001). Moreover, co-treatment of AICAR and A23187 was able to further enhance the inhibitory effect on cell growth of Hela, CaSki and C41 cells. Notably, both AICAR and A23187 exerted the anti-proliferative effect on cervical cancer cells by suppressing AMPK/mTOR signalling activity. These data suggest that A23187 could be an alternative potential therapeutic drug used for anti-proliferation in LKB1-deficient cancer cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Activadores de Enzimas/uso terapéutico , Inhibidores de Crecimiento/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/uso terapéutico , Calcimicina/uso terapéutico , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Ribonucleótidos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/enzimología , Neoplasias del Cuello Uterino/genética
5.
Nat Neurosci ; 8(8): 985-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16007085

RESUMEN

The C-terminal PDZ ligand of the AMPA receptor GluR1 subunit may be important for expression of CA1 hippocampal long-term potentiation. To test this directly in vivo, we generated a knock-in mouse lacking the last seven residues of GluR1, comprising the PDZ ligand. This deletion did not affect basal GluR1 synaptic localization, basal synaptic transmission, long-term potentiation or long-term depression, indicating that the ligand is not required for CA1 hippocampal synaptic plasticity.


Asunto(s)
Hipocampo/fisiología , Ligandos , Potenciación a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Animales , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Distribución Tisular
6.
Langmuir ; 23(1): 297-304, 2007 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-17190518

RESUMEN

Because the active remodeling of biointerfaces is a paramount feature of nature, it is very likely that future, advanced biomaterials will be required to mimic at least certain aspects of the dynamic properties of natural interfaces. This need has fueled a quest for model surfaces that can undergo reversible switching upon application of external stimuli. Herein, we report the synthesis and characterization of a model system for studying reversibly switching surfaces based on low-density monolayers of mercaptohexadecanoic acid and mercaptoundecanoic acid. These monolayers were assembled on both gold and silver electrodes. When conducting electrochemical impedance spectroscopy under physiological conditions, these monolayers exhibit significant changes in their electrochemical barrier properties upon application of electrical DC potentials below +400 mV with respect to a standard calomel electrode. We further found the impedance switching to be reversible under physiological conditions. Moreover, the impedance can be fine-tuned by changing the magnitude of the applied electrical potential. Before and during impedance switching at pH 7.4 in aqueous buffer solutions, the low-density monolayers showed good stability according to grazing angle infrared spectroscopy data. We anticipate low-density monolayers to be potentially useful model surfaces when designing active biointerfaces for cell-based studies or rechargeable biosensors.


Asunto(s)
Técnicas Biosensibles , Ácidos Grasos/química , Membranas Artificiales , Compuestos de Sulfhidrilo/química , Impedancia Eléctrica , Electroquímica , Electrodos , Ácidos Palmíticos
7.
Mol Cell Neurosci ; 36(1): 86-94, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17689977

RESUMEN

Phosphorylation of various AMPA receptor subunits can alter synaptic transmission and plasticity at excitatory glutamatergic synapses in the central nervous system. Here, we identified threonine-840 (T840) on the GluR1 subunit of AMPA receptors as a novel phosphorylation site. T840 is phosphorylated by protein kinase C (PKC) in vitro and is a highly turned-over phosphorylation site in the hippocampus. Interestingly, the high basal phosphorylation of T840 in the hippocampus is maintained by a persistent activity of a protein kinase, which is counter-balanced by a basal protein phosphatase activity. To study the function of T840, we generated a line of mutant mice lacking this phosphorylation site using a gene knock-in technique. The mice generated lack T840, in addition to two previously identified phosphorylation sites S831 and S845. Using this mouse, we demonstrate that T840 may regulate synaptic plasticity in an age-dependent manner.


Asunto(s)
Receptores AMPA/metabolismo , Treonina/metabolismo , Animales , Línea Celular Transformada , Hipocampo/citología , Humanos , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/farmacología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Transfección/métodos
8.
Cell ; 112(5): 631-43, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12628184

RESUMEN

Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Depresión Sináptica a Largo Plazo/genética , Vías Nerviosas/metabolismo , Receptores AMPA/deficiencia , Sinapsis/metabolismo , Transmisión Sináptica/genética , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Femenino , Hipocampo/ultraestructura , Inmunohistoquímica , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mutación/genética , Vías Nerviosas/ultraestructura , Fosforilación , Transporte de Proteínas/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA