Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241776

RESUMEN

Oily sludge, as a critical hazardous waste, requires appropriate treatment for resource recovery and harmfulness reduction. Here, fast microwave-assisted pyrolysis (MAP) of oily sludge was conducted for oil removal and fuel production. The results indicated the priority of the fast MAP compared with the MAP under premixing mode, with the oil content in solid residues after pyrolysis reaching below 0.2%. The effects of pyrolysis temperature and time on product distribution and compositions were examined. In addition, pyrolysis kinetics can be well described using the Kissinger-Akahira-Sunose (KAS) and the Flynn-Wall-Ozawa (FWO) methods, with the activation energy being 169.7-319.1 kJ/mol in the feedstock conversional fraction range of 0.2-0.7. Subsequently, the pyrolysis residues were further treated by thermal plasma vitrification to immobilize the existing heavy metals. The amorphous phase and the glassy matrix were formed in the molten slags, resulting in bonding and, hence, immobilization of heavy metals. Operating parameters, including working current and melting time, were optimized to reduce the leaching concentrations of heavy metals, as well as to decrease their volatilization during vitrification.

2.
Materials (Basel) ; 15(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35208105

RESUMEN

A stable temperature site and the speed of heating the feedstocks play a key role in pyrolysis processes. In this study, the product distribution arising from pyrolysis of methyl ricinoleate (MR) at 550 °C with low and high heating rates was first studied by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results show that fast pyrolysis of MR favored the production of undecylenic acid methyl ester (UAME) and heptanal (HEP). Density functional theory (DFT) calculations were employed to reveal the UAME and HEP formation process from pyrolysis of MR. The bond dissociation energies (BDEs) of C-C bonds in MR showed that the C11-C12 bond is the weakest. This suggests that UAME and HEP are two major products. The process of slow and fast MR pyrolysis was the dehydration-first and the pyrolysis-first trend, respectively. The calculated activation energies of MR pyrolysis to UAME and HEP and MR dehydration to 9,12-octadecadienoic acid methyl ester were 287.72 and 238.29 kJ/mol, respectively. The much higher product yields obtained in the fast pyrolysis reactors than those from conventional tubular reactors confirmed the proposed process.

3.
Bioresour Technol ; 186: 334-337, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818921

RESUMEN

Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C.


Asunto(s)
Calor , Microondas , Ácidos Ricinoleicos/química , Ácidos Undecilénicos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA