Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Circ Res ; 124(8): 1184-1197, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30744497

RESUMEN

RATIONALE: Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE: We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS: Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS: Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Genes de Retinoblastoma/fisiología , Genes p16/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Animales , Línea Celular , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Silenciador del Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Células Madre Pluripotentes/trasplante , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Porcinos , Regulación hacia Arriba
2.
J Neurosci ; 39(28): 5466-5480, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31097623

RESUMEN

cAMP signaling is known to be critical in neuronal survival and axon growth. Increasingly the subcellular compartmentation of cAMP signaling has been appreciated, but outside of dendritic synaptic regulation, few cAMP compartments have been defined in terms of molecular composition or function in neurons. Specificity in cAMP signaling is conferred in large part by A-kinase anchoring proteins (AKAPs) that localize protein kinase A and other signaling enzymes to discrete intracellular compartments. We now reveal that cAMP signaling within a perinuclear neuronal compartment organized by the large multivalent scaffold protein mAKAPα promotes neuronal survival and axon growth. mAKAPα signalosome function is explored using new molecular tools designed to specifically alter local cAMP levels as studied by live-cell FRET imaging. In addition, enhancement of mAKAPα-associated cAMP signaling by isoform-specific displacement of bound phosphodiesterase is demonstrated to increase retinal ganglion cell survival in vivo in mice of both sexes following optic nerve crush injury. These findings define a novel neuronal compartment that confers cAMP regulation of neuroprotection and axon growth and that may be therapeutically targeted in disease.SIGNIFICANCE STATEMENT cAMP is a second messenger responsible for the regulation of diverse cellular processes including neuronal neurite extension and survival following injury. Signal transduction by cAMP is highly compartmentalized in large part because of the formation of discrete, localized multimolecular signaling complexes by A-kinase anchoring proteins. Although the concept of cAMP compartmentation is well established, the function and identity of these compartments remain poorly understood in neurons. In this study, we provide evidence for a neuronal perinuclear cAMP compartment organized by the scaffold protein mAKAPα that is necessary and sufficient for the induction of neurite outgrowth in vitro and for the survival of retinal ganglion cells in vivo following optic nerve injury.


Asunto(s)
Orientación del Axón , AMP Cíclico/metabolismo , Células Ganglionares de la Retina/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Transferencia Resonante de Energía de Fluorescencia , Masculino , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología
3.
PLoS Genet ; 8(3): e1002537, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22396657

RESUMEN

Mutations in Pten-induced kinase 1 (PINK1) are linked to early-onset familial Parkinson's disease (FPD). PINK1 has previously been implicated in mitochondrial fission/fusion dynamics, quality control, and electron transport chain function. However, it is not clear how these processes are interconnected and whether they are sufficient to explain all aspects of PINK1 pathogenesis. Here we show that PINK1 also controls mitochondrial motility. In Drosophila, downregulation of dMiro or other components of the mitochondrial transport machinery rescued dPINK1 mutant phenotypes in the muscle and dopaminergic (DA) neurons, whereas dMiro overexpression alone caused DA neuron loss. dMiro protein level was increased in dPINK1 mutant but decreased in dPINK1 or dParkin overexpression conditions. In Drosophila larval motor neurons, overexpression of dPINK1 inhibited axonal mitochondria transport in both anterograde and retrograde directions, whereas dPINK1 knockdown promoted anterograde transport. In HeLa cells, overexpressed hPINK1 worked together with hParkin, another FPD gene, to regulate the ubiquitination and degradation of hMiro1 and hMiro2, apparently in a Ser-156 phosphorylation-independent manner. Also in HeLa cells, loss of hMiro promoted the perinuclear clustering of mitochondria and facilitated autophagy of damaged mitochondria, effects previously associated with activation of the PINK1/Parkin pathway. These newly identified functions of PINK1/Parkin and Miro in mitochondrial transport and mitophagy contribute to our understanding of the complex interplays in mitochondrial quality control that are critically involved in PD pathogenesis, and they may explain the peripheral neuropathy symptoms seen in some PD patients carrying particular PINK1 or Parkin mutations. Moreover, the different effects of loss of PINK1 function on Miro protein level in Drosophila and mouse cells may offer one explanation of the distinct phenotypic manifestations of PINK1 mutants in these two species.


Asunto(s)
Transporte Axonal , Proteínas de Drosophila/genética , Drosophila , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rho/genética , Animales , Autofagia/genética , Transporte Axonal/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Proteínas Mutantes/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ionóforos de Protónes/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
4.
Hum Mol Genet ; 21(6): 1384-90, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22156579

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia in the elderly. Accumulating evidence supports soluble amyloid-ß (Aß) oligomers as the leading candidate for the causative agent in AD and synapses as the primary site of Aß oligomer action. However, the molecular and cellular mechanisms by which Aß oligomers cause synaptic dysfunction and cognitive impairments remain poorly understood. Using primary cultures of rat hippocampal neurons as a model system, we show that the partitioning defective-1 (PAR-1)/microtubule affinity-regulating kinase (MARK) family kinases act as critical mediators of Aß toxicity on synapses and dendritic spines. Overexpression of MARK4 led to tau hyperphosphorylation, reduced expression of synaptic markers, and loss of dendritic spines and synapses, phenotypes also observed after Aß treatment. Importantly, expression of a non-phosphorylatable form of tau with the PAR-1/MARK site mutated blocked the synaptic toxicity induced by MARK4 overexpression or Aß treatment. To probe the involvement of endogenous MARK kinases in mediating the synaptic toxicity of Aß, we employed a peptide inhibitor capable of effectively and specifically inhibiting the activities of all PAR-1/MARK family members. This inhibitor abrogated the toxic effects of Aß oligomers on dendritic spines and synapses as assayed at the morphological and electrophysiological levels. Our results reveal a critical role for PAR-1/MARK kinases in AD pathogenesis and suggest PAR-1/MARK inhibitors as potential therapeutics for AD and possibly other tauopathies where aberrant tau hyperphosphorylation is involved.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Espinas Dendríticas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/efectos de los fármacos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Electrofisiología , Técnica del Anticuerpo Fluorescente , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mutación/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Ratas , Sinapsis/metabolismo , Proteínas tau/genética
5.
Hum Mol Genet ; 20(16): 3227-40, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21613270

RESUMEN

PTEN-induced putative kinase 1 (PINK1) and Parkin act in a common pathway to regulate mitochondrial dynamics, the involvement of which in the pathogenesis of Parkinson's disease (PD) is increasingly being appreciated. However, how the PINK1/Parkin pathway influences mitochondrial function is not well understood, and the exact role of this pathway in controlling mitochondrial dynamics remains controversial. Here we used mammalian primary neurons to examine the function of the PINK1/Parkin pathway in regulating mitochondrial dynamics and function. In rat hippocampal neurons, PINK1 or Parkin overexpression resulted in increased mitochondrial number, smaller mitochondrial size and reduced mitochondrial occupancy of neuronal processes, suggesting that the balance of mitochondrial fission/fusion dynamics is tipped toward more fission. Conversely, inactivation of PINK1 resulted in elongated mitochondria, indicating that the balance of mitochondrial fission/fusion dynamics is tipped toward more fusion. Furthermore, overexpression of the fission protein Drp1 (dynamin-related protein 1) or knocking down of the fusion protein OPA1 (optical atrophy 1) suppressed PINK1 RNAi-induced mitochondrial morphological defect, and overexpression of PINK1 or Parkin suppressed the elongated mitochondria phenotype caused by Drp1 RNAi. Functionally, PINK1 knockdown and overexpression had opposite effects on dendritic spine formation and neuronal vulnerability to excitotoxicity. Finally, we found that PINK1/Parkin similarly influenced mitochondrial dynamics in rat midbrain dopaminergic neurons. These results, together with previous findings in Drosophila dopaminergic neurons, indicate that the PINK1/Parkin pathway plays conserved roles in regulating neuronal mitochondrial dynamics and function.


Asunto(s)
Dopamina/metabolismo , Hipocampo/citología , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Atrofia/patología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Dinaminas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Unión Proteica/efectos de los fármacos , Proteínas Quinasas/deficiencia , Interferencia de ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
6.
Neural Plast ; 2012: 247150, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22474602

RESUMEN

Synapses are sites of cell-cell contacts that transmit electrical or chemical signals in the brain. Dendritic spines are protrusions on dendritic shaft where excitatory synapses are located. Synapses and dendritic spines are dynamic structures whose plasticity is thought to underlie learning and memory. No wonder neurobiologists are intensively studying mechanisms governing the structural and functional plasticity of synapses and dendritic spines in an effort to understand and eventually treat neurological disorders manifesting learning and memory deficits. One of the best-studied brain disorders that prominently feature synaptic and dendritic spine pathology is Alzheimer's disease (AD). Recent studies have revealed molecular mechanisms underlying the synapse and spine pathology in AD, including a role for mislocalized tau in the postsynaptic compartment. Synaptic and dendritic spine pathology is also observed in other neurodegenerative disease. It is possible that some common pathogenic mechanisms may underlie the synaptic and dendritic spine pathology in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/patología , Espinas Dendríticas/patología , Sinapsis/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Humanos , Ratones , Enfermedades del Sistema Nervioso/patología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/patología
7.
J Neurochem ; 104(3): 830-45, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18199120

RESUMEN

We have recently shown that disrupting the expression and post-synaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or over-expression of a dominant negative gephyrin-enhanced green fluorescent protein (EGFP) fusion protein, leads to decreased number of post-synaptic gephyrin and GABA(A) receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABA(A) receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts. Knocking down gephyrin with gephyrin RNAi, or preventing gephyrin clustering by over-expression of the dominant negative gephyrin-enhanced green fluorescent protein fusion protein, leads to larger post-synaptic PSD-95 clusters and larger pre-synaptic glutamatergic terminals. On the other hand, over-expression of gephyrin leads to slightly smaller PSD-95 clusters and pre-synaptic glutamatergic terminals. The change in size of PSD-95 clusters were accompanied by a parallel change in the size of NR2-NMDA receptor clusters. It is concluded that the levels of expression and clustering of gephyrin, a protein that concentrates at the post-synaptic complex of the inhibitory synapses, not only has homotypic effects on GABAergic synaptic contacts, but also has heterotypic effects on glutamatergic synaptic contacts. We are proposing that gephyrin is a counterpart of the post-synaptic glutamatergic scaffold protein PSD-95 in regulating the number and/or size of the excitatory and inhibitory synaptic contacts.


Asunto(s)
Proteínas Portadoras/fisiología , Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Proteínas de la Membrana/fisiología , Terminales Presinápticos/metabolismo , Sinapsis/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Terminales Presinápticos/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ratas , Receptores de GABA-A/genética , Sinapsis/efectos de los fármacos , Transfección/métodos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
8.
J Neurochem ; 105(6): 2300-14, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18315564

RESUMEN

We have previously shown that the glutamate receptor interacting protein 1 (GRIP1) splice forms GRIP1a/b and GRIP1c4-7 are present at the GABAergic post-synaptic complex. Nevertheless, the role that these GRIP1 protein isoforms play at the GABAergic post-synaptic complex is not known. We are now showing that GRIP1c4-7 and GRIP1a/b interact with gephyrin, the main post-synaptic scaffold protein of GABAergic and glycinergic synapses. Gephyrin coprecipitates with GRIP1c4-7 or GRIP1a/b from rat brain extracts and from extracts of human embryonic kidney 293 cells that have been cotransfected with gephyrin and one of the GRIP1 protein isoforms. Moreover, purified gephyrin binds to purified GRIP1c4-7 or GRIP1a/b, indicating that gephyrin directly interacts with the common region of these GRIP1 proteins, which includes PDZ domains 4-7. An engineered deletion construct of GRIP1a/b (GRIP1a4-7), which both contains the aforementioned common region and binds to gephyrin, targets to the post-synaptic GABAergic complex of transfected cultured hippocampal neurons. In these hippocampal cultures, endogenous gephyrin colocalizes with endogenous GRIP1c4-7 and GRIP1a/b in over 90% of the GABAergic synapses. Double-labeling electron microscopy immunogold reveals that in the rat brain GRIP1c4-7 and GRIP1a/b colocalize with gephyrin at the post-synaptic complex of individual synapses. These results indicate that GRIP1c4-7 and GRIP1a/b colocalize and interact with gephyrin at the GABAergic post-synaptic complex and suggest that this interaction plays a role in GABAergic synaptic function.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Línea Celular , Células Cultivadas , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Transfección
9.
Cell Metab ; 20(2): 253-66, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24954417

RESUMEN

Disorders arising from impaired assembly of succinate dehydrogenase (SDH) result in a myriad of pathologies, consistent with its unique role in linking the citric acid cycle and electron transport chain. In spite of this critical function, however, only a few factors are known to be required for SDH assembly and function. We show here that two factors, Sdh6 (SDHAF1) and Sdh7 (SDHAF3), mediate maturation of the FeS cluster SDH subunit (Sdh2/SDHB). Yeast and Drosophila lacking SDHAF3 are impaired in SDH activity with reduced levels of Sdh2. Drosophila lacking the Sdh7 ortholog SDHAF3 are hypersensitive to oxidative stress and exhibit muscular and neuronal dysfunction. Yeast studies revealed that Sdh6 and Sdh7 act together to promote Sdh2 maturation by binding to a Sdh1/Sdh2 intermediate, protecting it from the deleterious effects of oxidants. These studies in yeast and Drosophila raise the possibility that SDHAF3 mutations may be associated with idiopathic SDH-associated diseases.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila , Proteínas de Drosophila/genética , Células HEK293 , Humanos , Hierro/química , Mutación , Estrés Oxidativo/efectos de los fármacos , Paraquat/toxicidad , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/genética , Azufre/química
10.
Nat Commun ; 3: 1312, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23271647

RESUMEN

The conserved kinases PAR-1/MARK are critically involved in processes such as asymmetric cell division, cell polarity and neuronal differentiation. Their deregulation has been implicated in diseases including Alzheimer's disease and cancer. Given the importance of PAR-1/MARK in health and disease, their activities need to be tightly controlled. However, little is known about the molecular mechanisms underlying their regulation in vivo. Here we show that in Drosophila, a phosphorylation-dependent ubiquitination mechanism restrains PAR-1 activation. Active PAR-1 generated by LKB1-controlled phosphorylation is targeted for ubiquitination and degradation by SCF (Skp, Cullin, F-box containing complex) (Slimb), whose action is antagonized by the deubiquitinating enzyme fat facets. This newly identified PAR-1-modifying module critically regulates synaptic morphology and tau-mediated postsynaptic toxicity of amyloid precursor protein (APP)/Aß-42, the causative agents of Alzheimer's disease, at the Drosophila neuromuscular junction. Our results provide new insights into the regulation of PAR-1 in various physiological processes and offer new therapeutic strategies for diseases involving PAR-1/MARK deregulation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/toxicidad , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila melanogaster/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/metabolismo , Proteínas tau/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Retina/enzimología , Retina/crecimiento & desarrollo , Retina/metabolismo , Sinapsis/enzimología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas tau/genética
11.
Mol Cell Neurosci ; 36(4): 484-500, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17916433

RESUMEN

Although gephyrin is an important postsynaptic scaffolding protein at GABAergic synapses, the role of gephyrin for GABAergic synapse formation and/or maintenance is still under debate. We report here that knocking down gephyrin expression with small hairpin RNAs (shRNAs) in cultured hippocampal pyramidal cells decreased both the number of gephyrin and GABA(A) receptor clusters. Similar results were obtained by disrupting the clustering of endogenous gephyrin by overexpressing a gephyrin-EGFP fusion protein that formed aggregates with the endogenous gephyrin. Disrupting postsynaptic gephyrin clusters also had transsynaptic effects leading to a significant reduction of GABAergic presynaptic boutons contacting the transfected pyramidal cells. Consistent with the morphological decrease of GABAergic synapses, electrophysiological analysis revealed a significant reduction in both the amplitude and frequency of the spontaneous inhibitory postsynaptic currents (sIPSCs). However, no change in the whole-cell GABA currents was detected, suggesting a selective effect of gephyrin on GABA(A) receptor clustering at postsynaptic sites. It is concluded that gephyrin plays a critical role for the stability of GABAergic synapses.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Células Piramidales/metabolismo , Agregación de Receptores/genética , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Proteínas Portadoras/genética , Células Cultivadas , Regulación hacia Abajo/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/ultraestructura , Potenciales Postsinápticos Inhibidores/genética , Proteínas de la Membrana/genética , Inhibición Neural/genética , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Células Piramidales/ultraestructura , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/genética , Sinapsis/ultraestructura , Transmisión Sináptica/genética
12.
J Neurochem ; 95(3): 756-70, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16248887

RESUMEN

We have used RNA interference (RNAi) to knock down the expression of the gamma2 subunit of the GABA(A) receptors (GABA(A)Rs) in pyramidal neurons in culture and in the intact brain. Two hairpin small interference RNAs (shRNAs) for the gamma2 subunit, one targeting the coding region and the other one the 3'-untranslated region (UTR) of the gamma2 mRNA, when introduced into cultured rat hippocampal pyramidal neurons, efficiently inhibited the synthesis of the GABA(A) receptor gamma2 subunit and the clustering of other GABA(A)R subunits and gephyrin in these cells. More significantly, this effect was accompanied by a reduction of the GABAergic innervation that these neurons received. In contrast, the gamma2 shRNAs had no effect on the clustering of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, postsynaptic density protein 95 (PSD-95) or presynaptic glutamatergic innervation. A gamma2-enhanced green fluorescent protein (EGFP) subunit construct, whose mRNA did not contain the 3'-UTR targeted by gamma2 RNAi, rescued both the postsynaptic clustering of GABA(A)Rs and the GABAergic innervation. Decreased GABA(A)R clustering and GABAergic innervation of pyramidal neurons in the post-natal rat cerebral cortex was also observed after in utero transfection of these neurons with the gamma2 shRNAs. The results indicate that the postsynaptic clustering of GABA(A)Rs in pyramidal neurons is involved in the stabilization of the presynaptic GABAergic contacts.


Asunto(s)
Células Piramidales/citología , Células Piramidales/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Anticuerpos Monoclonales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Cobayas , Hipocampo/citología , Proteínas de la Membrana/metabolismo , Ratones , Terminales Presinápticos/metabolismo , Interferencia de ARN , Conejos , Ratas , Ratas Sprague-Dawley , Agregación de Receptores/fisiología , Receptores AMPA/metabolismo , Receptores de GABA-A/inmunología
13.
J Neurochem ; 90(1): 173-89, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15198677

RESUMEN

We have found that the brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) interacts with the beta subunits of the gamma-aminobutyric acid type-A receptor (GABA(A)R). BIG2 is a Sec7 domain-containing guanine nucleotide exchange factor known to be involved in vesicular and protein trafficking. The interaction between the 110 amino acid C-terminal fragment of BIG2 and the large intracellular loop of the GABA(A)R beta subunits was revealed with a yeast two-hybrid assay. The native BIG2 and GABA(A)Rs interact in the brain since both coprecipitated from detergent extracts with either anti-GABA(A)R or anti-BIG2 antibodies. In transfected human embryonic kidney cell line 293 cells, BIG2 promotes the exit of GABA(A)Rs from endoplasmic reticulum. Double label immunofluorescence of cultured hippocampal neurons and electron microscopy immunocytochemistry of rat brain tissue show that BIG2 concentrates in the trans-Golgi network. BIG2 is also present in vesicle-like structures in the dendritic cytoplasm, sometimes colocalizing with GABA(A)Rs. BIG2 is present in both inhibitory GABAergic synapses that contain GABA(A)Rs and in asymmetric excitatory synapses. The results are consistent with the hypotheses that the interaction of BIG2 with the GABA(A)R beta subunits plays a role in the exocytosis and trafficking of assembled GABA(A)R to the cell surface.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Receptores de GABA-A/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Células Cultivadas , Dendritas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Masculino , Datos de Secuencia Molecular , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Red trans-Golgi/metabolismo
14.
J Biol Chem ; 279(37): 38978-90, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15226318

RESUMEN

We have isolated, from a rat brain cDNA library, a clone corresponding to a 2779-bp cDNA encoding a novel splice form of the glutamate receptor interacting protein-1 (GRIP1). We call this 696-amino acid splice form GRIP1c 4-7 to differentiate it from longer splice forms of GRIP1a/b containing seven PDZ domains. The four PDZ domains of GRIP1c 4-7 are identical to PDZ domains 4-7 of GRIP1a/b. GRIP1c 4-7 also contains 35 amino acids at the N terminus and 12 amino acids at the C terminus that are different from GRIP1a/b. In transfected HEK293 cells, a majority of GRIP1c 4-7 was associated with the plasma membrane. GRIP1c 4-7 interacted with GluR2/3 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor. In low density hippocampal cultures, GRIP1c 4-7 clusters colocalized with GABAergic (where GABA is gamma-aminobutyric acid) and glutamatergic synapses, although a higher percentage of GRIP1c 4-7 clusters colocalized with gamma-aminobutyric acid, type A, receptor (GABA(A)R) clusters than with alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor clusters. Transfection of hippocampal neurons with hemagglutinin-tagged GRIP1c 4-7 showed that it could target to the postsynaptic complex of GABAergic synapses colocalizing with GABA(A)R clusters. GRIP1c 4-7-specific antibodies, which did not recognize previously described splice forms of GRIP1, recognized a 75-kDa protein that is enriched in a postsynaptic density fraction isolated from rat brain. EM immunocytochemistry experiments showed that in intact brain GRIP1c 4-7 concentrates at postsynaptic complexes of both type I glutamatergic and type II GABAergic synapses although it is also presynaptically localized. These results indicate that GRIP1c 4-7 plays a role not only in glutamatergic synapses but also in GABAergic synapses.


Asunto(s)
Proteínas Portadoras/química , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , GABAérgicos/metabolismo , Proteínas del Tejido Nervioso/química , Receptores AMPA/química , Sinapsis/metabolismo , Regiones no Traducidas 5' , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Proteínas Portadoras/biosíntesis , Línea Celular , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Biblioteca de Genes , Aparato de Golgi/metabolismo , Hipocampo/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Masculino , Microscopía Electrónica , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores AMPA/biosíntesis , Homología de Secuencia de Aminoácido , Transfección , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA