Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6360-6375, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38682589

RESUMEN

Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN , Autoantígeno Ku , Precursores del ARN , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Humanos , Precursores del ARN/metabolismo , Precursores del ARN/genética , Línea Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Fosforilación , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Animales , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
2.
J Biol Chem ; 300(3): 107115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38403248

RESUMEN

RAD51-associated protein 1 (RAD51AP1) is known to promote homologous recombination (HR) repair. However, the precise mechanism of RAD51AP1 in HR repair is unclear. Here, we identify that RAD51AP1 associates with pre-rRNA. Both the N terminus and C terminus of RAD51AP1 recognize pre-rRNA. Pre-rRNA not only colocalizes with RAD51AP1 at double-strand breaks (DSBs) but also facilitates the recruitment of RAD51AP1 to DSBs. Consistently, transient inhibition of pre-rRNA synthesis by RNA polymerase I inhibitor suppresses the recruitment of RAD51AP1 as well as HR repair. Moreover, RAD51AP1 forms liquid-liquid phase separation in the presence of pre-rRNA in vitro, which may be the molecular mechanism of RAD51AP1 foci formation. Taken together, our results demonstrate that pre-rRNA mediates the relocation of RAD51AP1 to DSBs for HR repair.


Asunto(s)
Proteínas de Unión al ADN , Recombinación Homóloga , Proteínas de Unión al ARN , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Precursores del ARN , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
EMBO J ; 40(2): e104542, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33264433

RESUMEN

Optimal DNA damage response is associated with ADP-ribosylation of histones. However, the underlying molecular mechanism of DNA damage-induced histone ADP-ribosylation remains elusive. Herein, using unbiased mass spectrometry, we identify that glutamate residue 141 (E141) of variant histone H2AX is ADP-ribosylated following oxidative DNA damage. In-depth studies performed with wild-type H2AX and the ADP-ribosylation-deficient E141A mutant suggest that H2AX ADP-ribosylation plays a critical role in base excision repair (BER). Mechanistically, ADP-ribosylation on E141 mediates the recruitment of Neil3 glycosylase to the sites of DNA damage for BER. Moreover, loss of this ADP-ribosylation enhances serine-139 phosphorylation of H2AX (γH2AX) upon oxidative DNA damage and erroneously causes the accumulation of DNA double-strand break (DSB) response factors. Taken together, these results reveal that H2AX ADP-ribosylation not only facilitates BER repair, but also suppresses the γH2AX-mediated DSB response.


Asunto(s)
ADP-Ribosilación/genética , Adenosina Difosfato/metabolismo , Histonas/metabolismo , Línea Celular , Línea Celular Tumoral , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Células HEK293 , Humanos , Fosforilación/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
4.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977974

RESUMEN

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Asunto(s)
Citidina Desaminasa , Cambio de Clase de Inmunoglobulina , Estructuras R-Loop , Cambio de Clase de Inmunoglobulina/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/química , Animales , Ratones , Metilación , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Recombinación Genética , ARN/metabolismo , ARN/genética
5.
Mol Cell ; 58(1): 172-85, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25818648

RESUMEN

Nonhomologous end-joining (NHEJ) is a major DNA double-strand break repair pathway that is conserved in eukaryotes. In vertebrates, NHEJ further acquires end-processing capacities (e.g., hairpin opening) in addition to direct end-ligation. The catalytic subunit of DNA-PK (DNA-PKcs) is a vertebrate-specific NHEJ factor that can be autophosphorylated or transphosphorylated by ATM kinase. Using a mouse model expressing a kinase-dead (KD) DNA-PKcs protein, we show that ATM-mediated transphosphorylation of DNA-PKcs regulates end-processing at the level of Artemis recruitment, while strict autophosphorylation of DNA-PKcs is necessary to relieve the physical blockage on end-ligation imposed by the DNA-PKcs protein itself. Accordingly, DNA-PKcs(KD/KD) mice and cells show severe end-ligation defects and p53- and Ku-dependent embryonic lethality, but open hairpin-sealed ends normally in the presence of ATM kinase activity. Together, our findings identify DNA-PKcs as the molecular switch that coordinates end-processing and end-ligation at the DNA ends through differential phosphorylations.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN por Unión de Extremidades/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Proteínas Nucleares/genética , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/citología , Línea Celular , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Femenino , Regulación de la Expresión Génica , Autoantígeno Ku , Masculino , Ratones , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Fosforilación , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(7): 3621-3626, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024762

RESUMEN

Ten-eleven translocation (TET) family enzymes (TET1, TET2, and TET3) oxidize 5-methylcytosine (5mC) and generate 5-hydroxymethylcytosine (5hmC) marks on the genome. Each TET protein also interacts with specific binding partners and partly plays their role independent of catalytic activity. Although the basic role of TET enzymes is well established now, the molecular mechanism and specific contribution of their catalytic and noncatalytic domains remain elusive. Here, by combining in silico and biochemical screening strategy, we have identified a small molecule compound, C35, as a first-in-class TET inhibitor that specifically blocks their catalytic activities. Using this inhibitor, we explored the enzymatic function of TET proteins during somatic cell reprogramming. Interestingly, we found that C35-mediated TET inactivation increased the efficiency of somatic cell programming without affecting TET complexes. Using high-throughput mRNA sequencing, we found that by targeting 5hmC repressive marks in the promoter regions, C35-mediated TET inhibition activates the transcription of the BMP-SMAD-ID signaling pathway, which may be responsible for promoting somatic cell reprogramming. These results suggest that C35 is an important tool for inducing somatic cell reprogramming, as well as for dissecting the other biological functions of TET enzymatic activities without affecting their other nonenzymatic roles.


Asunto(s)
Reprogramación Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Dioxigenasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Dominio Catalítico , Línea Celular , Reprogramación Celular/efectos de los fármacos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Dioxigenasas/metabolismo , Humanos , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
7.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203614

RESUMEN

The elevated occurrence of debilitating neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Machado-Joseph disease (MJD), demands urgent disease-modifying therapeutics. Owing to the evolutionarily conserved molecular signalling pathways with mammalian species and facile genetic manipulation, the nematode Caenorhabditis elegans (C. elegans) emerges as a powerful and manipulative model system for mechanistic insights into neurodegenerative diseases. Herein, we review several representative C. elegans models established for five common neurodegenerative diseases, which closely simulate disease phenotypes specifically in the gain-of-function aspect. We exemplify applications of high-throughput genetic and drug screenings to illustrate the potential of C. elegans to probe novel therapeutic targets. This review highlights the utility of C. elegans as a comprehensive and versatile platform for the dissection of neurodegenerative diseases at the molecular level.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Caenorhabditis elegans/genética , Enfermedades Neurodegenerativas/genética , Mamíferos
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 1-14, 2023 Jan 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-36935172

RESUMEN

OBJECTIVES: Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms. METHODS: Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions. RESULTS: Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1ß, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1ß, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05). CONCLUSIONS: Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Asunto(s)
Dermatitis Alérgica por Contacto , Dermatitis Atópica , Animales , Ratones , Dinitroclorobenceno/toxicidad , Dinitroclorobenceno/metabolismo , Piel/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Dermatitis Alérgica por Contacto/tratamiento farmacológico , Dermatitis Alérgica por Contacto/metabolismo , Dermatitis Alérgica por Contacto/patología , Dermatitis Atópica/inducido químicamente , Transducción de Señal , ARN Mensajero/metabolismo , Ratones Endogámicos BALB C
9.
FASEB J ; 35(5): e21373, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811702

RESUMEN

Hyperactivation of PARP1 is known to be a major cause of necrotic cell death by depleting NAD+ /ATP pools during Ca2+ overload which is associated with many ischemic diseases. However, little is known about how PARP1 hyperactivity is regulated during calcium overload. In this study we show that ATR kinase, well known for its role in DNA damage responses, suppresses ionomycin, glutamate, or quinolinic acid-induced necrotic death of cells including SH-SY5Y neuronal cells. We found that the inhibition of necrosis requires the kinase activity of ATR. Specifically, ATR binds to and phosphorylates PARP1 at Ser179 after the ionophore treatments. This site-specific phosphorylation inactivates PARP1, inhibiting ionophore-induced necrosis. Strikingly, all of this occurs in the absence of detectable DNA damage and signaling up to 8 hours after ionophore treatment. Furthermore, little AIF was released from mitochondria/cytoplasm for nuclear import, supporting the necrotic type of cell death in the early period of the treatments. Our results reveal a novel ATR-mediated anti-necrotic mechanism in the cellular stress response to calcium influx without DNA damage signaling.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Calcio/metabolismo , Daño del ADN , Necrosis , Neuroblastoma/patología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estrés Oxidativo , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
10.
Nucleic Acids Res ; 48(6): 3001-3013, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31965183

RESUMEN

Nucleosomal histones are barriers to the DNA repair process particularly at DNA double-strand breaks (DSBs). However, the molecular mechanism by which these histone barriers are removed from the sites of DNA damage remains elusive. Here, we have generated a single specific inducible DSB in the cells and systematically examined the histone removal process at the DNA lesion. We found that histone removal occurred immediately following DNA damage and could extend up to a range of few kilobases from the lesion. To examine the molecular mechanism underlying DNA damage-induced histone removal, we screened histone modifications and found that histone ADP-ribosylation was associated with histone removal at DNA lesions. PARP inhibitor treatment suppressed the immediate histone eviction at DNA lesions. Moreover, we examined histone chaperones and found that the FACT complex recognized ADP-ribosylated histones and mediated the removal of histones in response to DNA damage. Taken together, our results reveal a pathway that regulates early histone barrier removal at DNA lesions. It may also explain the mechanism by which PARP inhibitor regulates early DNA damage repair.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Histonas/genética , Poli ADP Ribosilación/genética , ADP-Ribosilación/genética , Núcleo Celular/genética , Cromatina/genética , Cromosomas Humanos X/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Células HCT116 , Humanos , Chaperonas Moleculares/genética , Nucleosomas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
11.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164208

RESUMEN

Tea (Camellia sinensis, Theaceae) is one of the most widely consumed beverages in the world. The three major types of tea, green tea, oolong tea, and black tea, differ in terms of the manufacture and chemical composition. Catechins, theaflavins, and thearubigins have been identified as the major components in tea. Other minor oligomers have also been found in tea. Different kinds of ring fission and formation elucidate the major transformed pathways of tea catechins to their dimers and polymers. The present review summarizes the data concerning the enzymatic oxidation of catechins, their dimers, and thearubigins in tea.


Asunto(s)
Catequina/metabolismo , Enzimas/metabolismo , Té/metabolismo , Oxidación-Reducción
12.
J Biol Chem ; 295(40): 13838-13849, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32753484

RESUMEN

The ADP-ribosylhydrolase ARH3 plays a key role in DNA damage repair, digesting poly(ADP-ribose) and removing ADP-ribose from serine residues of the substrates. Specific inhibitors that selectively target ARH3 would be a useful tool to examine DNA damage repair, as well as a possible strategy for tumor suppression. However, efforts to date have not identified any suitable compounds. Here, we used in silico and biochemistry screening to search for ARH3 inhibitors. We discovered a small molecule compound named ARH3 inhibitor 26 (AI26) as, to our knowledge, the first ARH3 inhibitor. AI26 binds to the catalytic pocket of ARH3 and inhibits the enzymatic activity of ARH3 with an estimated IC50 of ∼2.41 µm in vitro Moreover, hydrolysis of DNA damage-induced ADP-ribosylation was clearly inhibited when cells were pretreated with AI26, leading to defects in DNA damage repair. In addition, tumor cells with DNA damage repair defects were hypersensitive to AI26 treatment, as well as combinations of AI26 and other DNA-damaging agents such as camptothecin and doxorubicin. Collectively, these results reveal not only a chemical probe to study ARH3-mediated DNA damage repair but also a chemotherapeutic strategy for tumor suppression.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Línea Celular Tumoral , Glicósido Hidrolasas/genética , Humanos
13.
Mol Cell ; 49(5): 897-907, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23394999

RESUMEN

Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites; this accumulation was dependent on an E2 enzyme (UBE2M) and an E3 ubiquitin ligase (RNF111). We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (motif interacting with ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process.


Asunto(s)
Daño del ADN , ADN/metabolismo , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular , Células Cultivadas , Reparación del ADN , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína NEDD8 , Proteínas Nucleares/metabolismo , Poliadenilación , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo
14.
Nucleic Acids Res ; 47(3): 1321-1334, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30496552

RESUMEN

All the eukaryotic DNA ligases are known to use adenosine triphosphate (ATP) for DNA ligation. Here, we report that human DNA ligase IV, a key enzyme in DNA double-strand break (DSB) repair, is able to use NAD+ as a substrate for double-stranded DNA ligation. In the in vitro ligation assays, we show that the recombinant Ligase IV can use both ATP and NAD+ for DNA ligation. For NAD+-mediated ligation, the BRCA1 C-terminal (BRCT) domain of Ligase IV recognizes NAD+ and facilitates the adenylation of Ligase IV, the first step of ligation. Although XRCC4, the functional partner of Ligase IV, is not required for the NAD+-mediated adenylation, it regulates the transfer of AMP moiety from Ligase IV to the DNA end. Moreover, cancer-associated mutation in the BRCT domain of Ligase IV disrupts the interaction with NAD+, thus abolishes the NAD+-mediated adenylation of Ligase IV and DSB ligation. Disrupting the NAD+ recognition site in the BRCT domain impairs non-homologous end joining (NHEJ) in cell. Taken together, our study reveals that in addition to ATP, Ligase IV may use NAD+ as an alternative adenylation donor for NHEJ repair and maintaining genomic stability.


Asunto(s)
Proteína BRCA1/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , NAD/genética , Unión Proteica , Dominios Proteicos/genética
15.
Genes Dev ; 27(16): 1752-68, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23964092

RESUMEN

Poly-ADP-ribosylation is a unique post-translational modification participating in many biological processes, such as DNA damage response. Here, we demonstrate that a set of Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains recognizes poly(ADP-ribose) (PAR) both in vitro and in vivo. Among these FHA and BRCT domains, the FHA domains of APTX and PNKP interact with iso-ADP-ribose, the linkage of PAR, whereas the BRCT domains of Ligase4, XRCC1, and NBS1 recognize ADP-ribose, the basic unit of PAR. The interactions between PAR and the FHA or BRCT domains mediate the relocation of these domain-containing proteins to DNA damage sites and facilitate the DNA damage response. Moreover, the interaction between PAR and the NBS1 BRCT domain is important for the early activation of ATM during DNA damage response and ATM-dependent cell cycle checkpoint activation. Taken together, our results demonstrate two novel PAR-binding modules that play important roles in DNA damage response.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Daño del ADN/fisiología , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ligasas/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
16.
BMC Infect Dis ; 20(1): 489, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646373

RESUMEN

BACKGROUND: This paper introduces a comprehensive case management model uniting doctors, nurses, and non-governmental organizations (NGOs) in order to shorten the time from HIV diagnosis to initiation of antiviral therapy, improve patients' adherence, and ameliorate antiretroviral treatment (ART)-related outcomes. METHODS: All newly diagnosed human immunodeficiency virus (HIV) cases at Beijing YouAn Hospital from January 2012 to December 2013 were selected as the control group, while all newly diagnosed HIV-infected patients from January 2015 to December 2016 were selected as the intervention group, receiving the comprehensive case management model. RESULTS: 4906 patients were enrolled, of which 1549 were in the control group and 3357 in the intervention group. The median time from confirming HIV infection to ART initiation in the intervention group was 35 (18-133) days, much shorter than the control group (56 (26-253) days, P < 0.001). Participants in the intervention group had better ART adherence compared to those in the control group (intervention: 95.3%; control: 89.2%; p < 0.001). During the 2 years' follow-up, those receiving case management were at decreased odds of experiencing virological failure (OR: 0.27, 95%CI: 0.17-0.42, P < 0.001). Observed mortality was 0.4 deaths per 100 patient-years of follow-up for patients in the control group compared with 0.2 deaths per 100 patient-years of follow-up in the intervention group. CONCLUSIONS: People living with HIV engaged in the comprehensive case management model were more likely to initiate ART sooner and maintained better treatment compliance and improved clinical outcomes compared to those who received routine care. A comprehensive case management program could be implemented in hospitals across China in order to reduce the HIV disease burden in the country.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida/epidemiología , Antirretrovirales/uso terapéutico , Manejo de Caso , VIH-1/inmunología , Tiempo de Tratamiento , Síndrome de Inmunodeficiencia Adquirida/mortalidad , Adulto , Beijing/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Cumplimiento de la Medicación , Persona de Mediana Edad , Retención en el Cuidado , Estudios Retrospectivos , Tasa de Supervivencia , Resultado del Tratamiento
17.
Mol Cell ; 46(5): 662-73, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22681888

RESUMEN

Embryonic stem cells (ESCs) maintain high genomic plasticity, which is essential for their capacity to enter diverse differentiation pathways. Posttranscriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Endopeptidasas/fisiología , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Ensamble y Desensamble de Cromatina , Regulación hacia Abajo , Células Madre Embrionarias/metabolismo , Endopeptidasas/metabolismo , Epigénesis Genética , Humanos , Ratones , Modelos Genéticos , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas , Ubiquitinación
18.
Nucleic Acids Res ; 46(7): 3446-3457, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29447383

RESUMEN

DNA double-strand breaks (DSBs) are fatal DNA lesions and activate a rapid DNA damage response. However, the earliest stage of DSB sensing remains elusive. Here, we report that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than other DSB sensors. Using super-resolved fluorescent particle tracking, we further examine the relocation kinetics of PARP1 and the Ku70/80 complex to a single DSB, and find that PARP1 and the Ku70/80 complex are recruited to the DSB almost at the same time. Notably, only the Ku70/80 complex occupies the DSB exclusively in the G1 phase; whereas PARP1 competes with the Ku70/80 complex at the DSB in the S/G2 phase. Moreover, in the S/G2 phase, PARP1 removes the Ku70/80 complex through its enzymatic activity, which is further confirmed by in vitro DSB-binding assays. Taken together, our results reveal PARP1 and the Ku70/80 complex as critical DSB sensors, and suggest that PARP1 may function as an important regulator of the Ku70/80 complex at the DSBs in the S/G2 phase.


Asunto(s)
Roturas del ADN de Doble Cadena , Autoantígeno Ku/genética , Imagen Óptica/métodos , Poli(ADP-Ribosa) Polimerasa-1/genética , Animales , Núcleo Celular/genética , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Genoma , Cinética , Autoantígeno Ku/química , Ratones , Células 3T3 NIH , Poli(ADP-Ribosa) Polimerasa-1/química
19.
Proc Natl Acad Sci U S A ; 114(27): 7106-7111, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630313

RESUMEN

Germline mutation of BRCA2 induces hereditary pancreatic cancer. However, how BRCA2 mutation specifically induces pancreatic tumorigenesis remains elusive. Here, we have examined a mouse model of Brca2-deficiency-induced pancreatic tumors and found that excessive reactive nitrogen species (RNS), such as nitrite, are generated in precancerous pancreases, which induce massive DNA damage, including DNA double-strand breaks. RNS-induced DNA lesions cause genomic instability in the absence of Brca2. Moreover, with the treatment of antioxidant tempol to suppress RNS, not only are DNA lesions significantly reduced, but also the onset of pancreatic cancer is delayed. Thus, this study demonstrates that excess RNS are a nongenetic driving force for Brca2-deficiency-induced pancreatic tumors. Suppression of RNS could be an important strategy for pancreatic cancer prevention.


Asunto(s)
Proteína BRCA2/genética , Mutación de Línea Germinal , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Animales , Antioxidantes/metabolismo , Carcinogénesis , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Óxidos N-Cíclicos/farmacología , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Femenino , Inestabilidad Genómica , Genotipo , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Mutación , Marcadores de Spin
20.
J Biol Chem ; 293(37): 14470-14480, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30045870

RESUMEN

ADP-ribosylation of proteins plays key roles in multiple biological processes, including DNA damage repair. Recent evidence suggests that serine is an important acceptor for ADP-ribosylation, and that serine ADP-ribosylation is hydrolyzed by ADP-ribosylhydrolase 3 (ARH3 or ADPRHL2). However, the structural details in ARH3-mediated hydrolysis remain elusive. Here, we determined the structure of ARH3 in a complex with ADP-ribose (ADPR). Our analyses revealed a group of acidic residues in ARH3 that keep two Mg2+ ions at the catalytic center for hydrolysis of Ser-linked ADP-ribosyl group. In particular, dynamic conformational changes involving Glu41 were observed in the catalytic center. Our observations suggest that Mg2+ ions together with Glu41 and water351 are likely to mediate the cleavage of the glycosidic bond in the serine-ADPR substrate. Moreover, we found that ADPR is buried in a groove and forms multiple hydrogen bonds with the main chain and side chains of ARH3 residues. On the basis of these structural findings, we used site-directed mutagenesis to examine the functional roles of key residues in the catalytic pocket of ARH3 in mediating the hydrolysis of ADP-ribosyl from serine and DNA damage repair. Moreover, we noted that ADPR recognition is essential for the recruitment of ARH3 to DNA lesions. Taken together, our study provides structural and functional insights into the molecular mechanism by which ARH3 hydrolyzes the ADP-ribosyl group from serine and contributes to DNA damage repair.


Asunto(s)
ADP-Ribosilación , Glicósido Hidrolasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Daño del ADN , Reparación del ADN , Ácido Glutámico/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Células HEK293 , Humanos , Enlace de Hidrógeno , Hidrólisis , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Conformación Proteica , Homología de Secuencia de Aminoácido , Serina/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA