Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29153836

RESUMEN

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Asunto(s)
Regulación de la Expresión Génica , Lipogénesis , Procesamiento Postranscripcional del ARN , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Femenino , Xenoinjertos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
2.
Cell ; 163(4): 829-39, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544936

RESUMEN

Many DNA and RNA regulatory proteins contain polypeptide domains that are unstructured when analyzed in cell lysates. These domains are typified by an over-representation of a limited number of amino acids and have been termed prion-like, intrinsically disordered or low-complexity (LC) domains. When incubated at high concentration, certain of these LC domains polymerize into labile, amyloid-like fibers. Here, we report methods allowing the generation of a molecular footprint of the polymeric state of the LC domain of hnRNPA2. By deploying this footprinting technique to probe the structure of the native hnRNPA2 protein present in isolated nuclei, we offer evidence that its LC domain exists in a similar conformation as that described for recombinant polymers of the protein. These observations favor biologic utility to the polymerization of LC domains in the pathway of information transfer from gene to message to protein.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Schistosoma japonicum/enzimología , Tirosina/análisis
3.
Mol Cell ; 73(6): 1115-1126.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30772176

RESUMEN

Dysregulation of chromatin methylation is associated with defects in cellular differentiation as well as a variety of cancers. How cells regulate the opposing activities of histone methyltransferase and demethylase enzymes to set the methylation status of the epigenome for proper control of gene expression and metabolism remains poorly understood. Here, we show that loss of methylation of the major phosphatase PP2A in response to methionine starvation activates the demethylation of histones through hyperphosphorylation of specific demethylase enzymes. In parallel, this regulatory mechanism enables cells to preserve SAM by increasing SAH to limit SAM consumption by methyltransferase enzymes. Mutants lacking the PP2A methyltransferase or the effector H3K36 demethylase Rph1 exhibit elevated SAM levels and are dependent on cysteine due to reduced capacity to sink the methyl groups of SAM. Therefore, PP2A directs the methylation status of histones by regulating the phosphorylation status of histone demethylase enzymes in response to SAM levels.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Histonas/metabolismo , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cromatina/genética , Remoción de Radical Alquila , Regulación Fúngica de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Metilación , Mutación , Unión Proteica , Proteína Fosfatasa 2/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398325

RESUMEN

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Asunto(s)
Comunicación Celular/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Análisis de Secuencia de ARN , Animales , Reprogramación Celular/genética , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ligandos , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/genética , Análisis de la Célula Individual
5.
Mol Cell ; 70(5): 949-960.e4, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29861159

RESUMEN

The mammalian Target of Rapamycin Complex 1 (mTORC1)-signaling system plays a critical role in the maintenance of cellular homeostasis by sensing and integrating multiple extracellular and intracellular cues. Therefore, uncovering the effectors of mTORC1 signaling is pivotal to understanding its pathophysiological effects. Here we report that the transcription factor forkhead/winged helix family k1 (Foxk1) is a mediator of mTORC1-regulated gene expression. Surprisingly, Foxk1 phosphorylation is increased upon mTORC1 suppression, which elicits a 14-3-3 interaction, a reduction of DNA binding, and nuclear exclusion. Mechanistically, this occurs by mTORC1-dependent suppression of nuclear signaling by the Foxk1 kinase, Gsk3. This pathway then regulates the expression of multiple genes associated with glycolysis and downstream anabolic pathways directly modulated by Foxk1 and/or by Foxk1-regulated expression of Hif-1α. Thus, Foxk1 mediates mTORC1-driven metabolic rewiring, and it is likely to be critical for metabolic diseases where improper mTORC1 signaling plays an important role.


Asunto(s)
Reprogramación Celular , Metabolismo Energético , Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Proliferación Celular , Regulación hacia Abajo , Factores de Transcripción Forkhead/genética , Glucógeno Sintasa Quinasa 3/genética , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Fosforilación , Unión Proteica , Transducción de Señal
6.
EMBO J ; 40(2): e104542, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33264433

RESUMEN

Optimal DNA damage response is associated with ADP-ribosylation of histones. However, the underlying molecular mechanism of DNA damage-induced histone ADP-ribosylation remains elusive. Herein, using unbiased mass spectrometry, we identify that glutamate residue 141 (E141) of variant histone H2AX is ADP-ribosylated following oxidative DNA damage. In-depth studies performed with wild-type H2AX and the ADP-ribosylation-deficient E141A mutant suggest that H2AX ADP-ribosylation plays a critical role in base excision repair (BER). Mechanistically, ADP-ribosylation on E141 mediates the recruitment of Neil3 glycosylase to the sites of DNA damage for BER. Moreover, loss of this ADP-ribosylation enhances serine-139 phosphorylation of H2AX (γH2AX) upon oxidative DNA damage and erroneously causes the accumulation of DNA double-strand break (DSB) response factors. Taken together, these results reveal that H2AX ADP-ribosylation not only facilitates BER repair, but also suppresses the γH2AX-mediated DSB response.


Asunto(s)
ADP-Ribosilación/genética , Adenosina Difosfato/metabolismo , Histonas/metabolismo , Línea Celular , Línea Celular Tumoral , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Células HEK293 , Humanos , Fosforilación/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
7.
Mol Cell ; 65(2): 260-271, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28107648

RESUMEN

Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins mediated by PARP family members, such as PARP-1. Although PARylation has been studied extensively, few examples of definitive biological roles for site-specific PARylation have been reported. Here we show that C/EBPß, a key pro-adipogenic transcription factor, is PARylated by PARP-1 on three amino acids in a conserved regulatory domain. PARylation at these sites inhibits C/EBPß's DNA binding and transcriptional activities and attenuates adipogenesis in various genetic and cell-based models. Interestingly, PARP-1 catalytic activity drops precipitously during the first 48 hr of differentiation, corresponding to a release of C/EBPß from PARylation-mediated inhibition. This promotes the binding of C/EBPß at enhancers controlling the expression of adipogenic target genes and continued differentiation. Depletion or chemical inhibition of PARP-1, or mutation of the PARylation sites on C/EBPß, enhances these early adipogenic events. Collectively, our results provide a clear example of how site-specific PARylation drives biological outcomes.


Asunto(s)
Adipocitos/enzimología , Adipogénesis , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Madre Embrionarias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Sitios de Unión , Proteína beta Potenciadora de Unión a CCAAT/genética , ADN/genética , ADN/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células 3T3 NIH , Fenotipo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica , Dominios Proteicos , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional , Transfección
8.
Insect Mol Biol ; 33(4): 417-426, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38549231

RESUMEN

REPAT (response to pathogen) is an immune-associated gene family that plays important roles in insect immune response to pathogens. Although nine REPAT genes have been identified in Spodoptera frugiperda (Lepidoptera: Noctuidae) currently, their functions and mechanisms in the immune response to pathogens still remain unclear. Therefore, SfREPAT38, a pathogen response gene (REPAT) of S. frugiperda, was characterised and its function was analysed. The results showed that SfREPAT38 contains a signal peptide and a transcription activator MBF2 (multi-protein bridging factor 2) domain. Quantitative real-time polymerase chain reaction analysis showed that SfREPAT38 was highly expressed in the sixth-instar larvae (L6) and was the highest in expression in the midgut of L6. We found that the expression of SfREPAT38 could be activated by challenge with four microbial pathogens (Bacillus thuringiensis, Metarhizium anisopliae, Spodoptera exigua nuclearpolyhedrosis and Escherichia coli), except 12 h after E. coli infection. Furthermore, the SfREPAT38 expression levels significantly decreased at 24, 48 and 72 h after SfREPAT38 dsRNA injection or feeding. Feeding with SfREPAT38 dsRNA significantly decreased the weight gain of S. frugiperda, and continuous feeding led to the death of S. frugiperda larvae from the fourth day. Moreover, SfREPAT38 dsRNA injection resulted in a significant decrease of weight gain on the fifth day. Silencing SfREPAT38 gene down-regulated the expression levels of immune genes belonging to the Toll pathway, including SPZ, Myd88, DIF, Cactus, Pell and Toll18W. After treatment with SfREPAT38 dsRNA, S. frugiperda became extremely sensitive to the B. thuringiensis infection, and the survival rate dramatically increased, with 100% mortality by the eighth day. The weight of S. frugiperda larvae was also significantly lower than that of the control groups from the second day onwards. In addition, the genes involved in the Toll signalling pathway and a few antibacterial peptide related genes were down-regulated after treatment. These results showed that SfREPAT38 is involved in the immune response of S. frugiperda larvae through mediating Toll signalling pathway.


Asunto(s)
Proteínas de Insectos , Larva , Transducción de Señal , Spodoptera , Animales , Spodoptera/inmunología , Spodoptera/genética , Spodoptera/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Inmunidad Innata , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
9.
Nature ; 558(7710): 435-439, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899451

RESUMEN

Sleep and wake have global effects on brain physiology, from molecular changes1-4 and neuronal activities to synaptic plasticity3-7. Sleep-wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep8-11. Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses4-6. Thus, the phosphorylation-dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep-wake homeostasis.


Asunto(s)
Encéfalo/metabolismo , Homeostasis , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Proteoma/análisis , Proteómica , Sueño/fisiología , Animales , Encéfalo/fisiología , Mutación con Ganancia de Función , Masculino , Consolidación de la Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/metabolismo , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología , Sinapsis/fisiología , Vigilia/fisiología
10.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071756

RESUMEN

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Asunto(s)
Espectrometría de Masas , Lipidómica , Preparaciones Farmacéuticas , Proteómica , Congresos como Asunto
11.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928326

RESUMEN

Diagnostic markers are desperately needed for the early detection of pancreatic ductal adenocarcinoma (PDA). We describe sets of markers expressed in temporal order in mouse models during pancreatitis, PDA initiation and progression. Cell type specificity and the differential expression of PDA markers were identified by screening single cell (sc) RNAseq from tumor samples of a mouse model for PDA (KIC) at early and late stages of PDA progression compared to that of a normal pancreas. Candidate genes were identified from three sources: (1) an unsupervised screening of the genes preferentially expressed in mouse PDA tumors; (2) signaling pathways that drive PDA, including the Ras pathway, calcium signaling, and known cancer genes, or genes encoding proteins that were identified by differential mass spectrometry (MS) of mouse tumors and conditioned media from human cancer cell lines; and (3) genes whose expression is associated with poor or better prognoses (PAAD, oncolnc.org). The developmental progression of PDA was detected in the temporal order of gene expression in the cancer cells of the KIC mice. The earliest diagnostic markers were expressed in epithelial cancer cells in early-stage, but not late-stage, PDA tumors. Other early markers were expressed in the epithelium of both early- and late-state PDA tumors. Markers that were expressed somewhat later were first elevated in the epithelial cancer cells of the late-stage tumors, then in both epithelial and mesenchymal cells, or only in mesenchymal cells. Stromal markers were differentially expressed in early- and/or late-stage PDA neoplasia in fibroblast and hematopoietic cells (lymphocytes and/or macrophages) or broadly expressed in cancer and many stromal cell types. Pancreatitis is a risk factor for PDA in humans. Mouse models of pancreatitis, including caerulein treatment and the acinar-specific homozygous deletion of differentiation transcription factors (dTFs), were screened for the early expression of all PDA markers identified in the KIC neoplasia. Prognostic markers associated with a more rapid decline were identified and showed differential and cell-type-specific expression in PDA, predominately in late-stage epithelial and/or mesenchymal cancer cells. Select markers were validated by immunohistochemistry in mouse and human samples of a normal pancreas and those with early- and late-stage PDA. In total, we present 2165 individual diagnostic and prognostic markers for disease progression to be tested in humans from pancreatitis to late-stage PDA.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Pancreatitis/metabolismo , Pancreatitis/genética , Pancreatitis/patología , Pancreatitis/diagnóstico , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Pronóstico , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Línea Celular Tumoral , Progresión de la Enfermedad
12.
Proteomics ; 23(17): e2200083, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36453556

RESUMEN

PARylation plays critical role in regulating multiple cellular processes such as DNA damage response and repair, transcription, RNA processing, and stress response. More than 300 human proteins have been found to be modified by PARylation on acidic residues, that is, Asp (D) and Glu (E). We used the deep-learning tool AlphaFold to predict protein-protein interactions (PPIs) and their interfaces for these proteins based on coevolution signals from joint multiple sequence alignments (MSAs). AlphaFold predicted 260 confident PPIs involving PARylated proteins, and about one quarter of these PPIs have D/E-PARylation sites in their predicted PPI interfaces. AlphaFold predictions offer novel insights into the mechanisms of PARylation regulations by providing structural details of the PPI interfaces. D/E-PARylation sites have a preference to occur in coil regions and disordered regions, and PPI interfaces containing D/E-PARylation sites tend to occur between short linear sequence motifs in disordered regions and globular domains. The hub protein PCNA is predicted to interact with more than 20 proteins via the common PIP box motif and the structurally variable flanking regions. D/E-PARylation sites were found in the interfaces of key components of the RNA transcription and export complex, the SF3a spliceosome complex, and H/ACA and C/D small nucleolar ribonucleoprotein complexes, suggesting that systematic PARylation have a profound effect in regulating multiple RNA-related processes such as RNA nuclear export, splicing, and modification. Finally, PARylation of SUMO2 could modulate its interaction with CHAF1A, thereby representing a potential mechanism for the cross-talk between PARylation and SUMOylation in regulation of chromatin remodeling.


Asunto(s)
ADP-Ribosilación , Poli ADP Ribosilación , Humanos , Factores de Transcripción , Ensamble y Desensamble de Cromatina , ARN
13.
Mol Pain ; 19: 17448069231178271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37247385

RESUMEN

Background: Fentanyl and its analogs are extensively used for pain relief. However, their paradoxically pronociceptive effects often lead to increased opioids consumption and risk of chronic pain. Compared to other synthetic opioids, remifentanil has been strongly linked to acute opioid hyperalgesia after exposure [remifentanil-induced hyperalgesia (RIH)]. The epigenetic regulation of microRNAs (miRNAs) on targeted mRNAs has emerged as an important pathogenesis in pain. The current research aimed at exploring the significance and contributions of miR-134-5p to the development of RIH. Methods: Both the antinociceptive and pronociceptive effects of two commonly used opioids were assessed, and miRNA expression profiles in the spinal dorsal horn (SDH) of mice acutely exposed to remifentanil and remifentanil equianalgesic dose (RED) sufentanil were screened. Next, the candidate miRNA level, cellular distribution, and function were examined by qPCR, fluorescent in situ hybridization (FISH) and Argonaute-2 immunoprecipitation. Furthermore, bioinformatics analysis, luciferase assays, miRNA overexpression, behavioral tests, golgi staining, electron microscopy, whole-cell patch-clamp recording, and immunoblotting were employed to investigate the potential targets and mechanisms underlying RIH. Results: Remifentanil induced significant pronociceptive effects and a distinct miRNA-profile from sufentanil when compared to saline controls. Among top 30 differentially expressed miRNAs spectrum, spinal miR-134-5p was dramatically downregulated in RIH mice but remained comparative in mice subjected to sufentanil. Moreover, Glutamate Receptor Ionotropic Kainate 3 (Grik3) was a target of miR-134-5p. The overexpression of miR-134-5p attenuated the hyperalgesic phenotype, excessive dendritic spine remodeling, excitatory synaptic structural plasticity, and Kainate receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in SDH resulting from remifentanil exposure. Besides, intrathecal injection of selective KA-R antagonist was able to reverse the GRIK3 membrane trafficking and relieved RIH. Conclusion: The miR-134-5p contributes to remifentanil-induced pronociceptive features via directly targeting Grik3 to modulate dendritic spine morphology and synaptic plasticity in spinal neurons.


Asunto(s)
Analgésicos Opioides , MicroARNs , Animales , Ratones , Analgésicos Opioides/efectos adversos , Epigénesis Genética , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Hibridación Fluorescente in Situ , Ácido Kaínico/efectos adversos , MicroARNs/genética , Dolor , Piperidinas/efectos adversos , Receptores de Glutamato/metabolismo , Remifentanilo/farmacología , Sufentanilo/efectos adversos
14.
Biochem Biophys Res Commun ; 646: 78-85, 2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36706709

RESUMEN

The identification of PARP1 as a therapeutic target for BRCA1/2-deficient cells has led to a paradigm shift for the treatment of human malignancies with BRCA1/2 mutations. However, our understanding of the mechanism of action of PARP1 inhibitors (PARPi) is still evolving. It is being increasingly appreciated that the immunomodulatory function of PARPi is a critical contributor of the anti-tumor effects of these compounds. Here, we identify a novel cell death effector pathway for PARPi where PARPi induces inflammatory pyroptosis that is mediated by caspase 3-dependent cleavage of GSDME. Caspase 3 is activated upon PARPi treatment which directly cleaves GSDME and, subsequently induces pyroptosis. Genetic and pharmacological experiments show that the presence of the PARP1 protein with uncompromised DNA binding capability is required for PARPi-induced pyroptosis, suggesting that PARP1 trapping is a key driver of this phenomenon. Importantly, we show that PARPi-induced GSDME cleavage and pyroptosis occurred only in the BRCA1-deficient cells, but not in those reconstituted with BRCA1 wild-type (WT). These findings suggest that pyroptosis could be a novel aspect of the immunomodulatory function of PARPi. Our studies could also offer new insights to the potential biomarkers and therapeutic strategies to achieve better anti-tumor effects of PARPi for BRCA-deficient tumors with low GSDME expression.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Gasderminas , Caspasa 3/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Muerte Celular , Neoplasias/patología
15.
J Neuroinflammation ; 20(1): 101, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122031

RESUMEN

BACKGROUND: Patients receiving epidural or intrathecal opioids administration for neuraxial analgesia frequently suffer from an irritating itch. STING (stimulator of interferon genes), an innate immune modulator, is strongly implicated in pain pathogenesis via neuron-immune modulation. Given that pain and itch share some common neurocircuits, we evaluate the therapeutic potential of STING agonists in opioid-induced itch and chronic itch. METHODS: Opioids (morphine, fentanyl and sufentanil) were intrathecally injected to induce acute itch. Chronic itch was induced by dry skin and contact dermatitis. Opioids analgesic effect, itch-induced scratching behavior, spinal expression of STING, phosphorylation of TBK1 (tank-binding kinase 1), IRF3 (interferon regulatory factor-3) and ERK (extracellular signal-regulated kinase), as well as production of IFN-α and IFN-ß were examined. STING agonists (DMXAA and ADU-S100), TBK1 inhibitor, recombinant IFN-α and IFN-ß elucidated the mechanism and treatment of itch. Whole-brain functional connectivity was evaluated using resting-state fMRI. RESULTS: We report the primary expression of STING protein by the spinal dorsal horn neurons. Intraperitoneal injection of DMXAA dose-dependently reduces morphine-induced scratch bouts, without impairing morphine antinociception. Simultaneously, DMXAA alleviates fentanyl- and sufentanil-induced itching-like behavior, and chronic scratching behavior caused by dry skin and contact dermatitis. Furthermore, DMXAA drastically increases spinal phosphorylation of TBK1 and IRF3 following morphine exposure, dry skin and contact dermatitis. DMXAA-induced anti-pruritus effects and spinal productions of IFN-α and IFN-ß are compensated by intrathecal delivery of the TBK1 inhibitor. Also, ADU-S100, recombinant IFN-α and IFN-ß exhibits remarkable attenuation in scratching behaviors after morphine injection and dermatitis. Recombinant IFN-α inhibits morphine-induced spinal phosphorylation of ERK. Finally, DMXAA prevents dermatitis-induced the increase of cerebral functional connectivity between regions of interests such as primary somatosensory cortex, piriform cortex, retrosplenial cortex, colliculus and ventral thalamus. CONCLUSIONS: STING activation confers protection against opioid-induced itch and chronic itch through spinal up-regulation of TBK1-IRF3-type I interferon cascades in mice, suggesting that STING agonists are promising candidates in translational development for pruritus relief.


Asunto(s)
Dermatitis por Contacto , Dermatitis , Interferón Tipo I , Animales , Ratones , Analgésicos Opioides/farmacología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Morfina , Dolor , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Sufentanilo/efectos adversos
16.
Small ; 19(15): e2206940, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36604989

RESUMEN

It is indispensable to develop and design high capacity, high rate performance, long cycling life, and low-cost electrodes materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Herein, MoO2 /MoS2 /C, with dual heterogeneous interfaces, is designed to induce a built-in electric field, which has been proved by experiments and theoretical calculation can accelerate electrochemical reaction kinetics and generate interfacial interactions to strengthen structural stability. The carbon foam serves as a conductive frame to assist the movement of electrons/ions, as well as forms heterogeneous interfaces with MoO2 /MoS2 through CS and CO bonds, maintaining structural integrity and enhancing electronic transport. Thanks to these unique characteristics, the MoO2 /MoS2 /C renders a significantly enhanced electrochemical performance (324 mAh g-1 at 1 A g-1 after 1000 cycles for SIB and 500 mAh g-1 at 1 A g-1 after 500 cycles for LIBs). The current work presents a simple, useful and cost-effective route to design high-quality electrodes via interfacial engineering.

17.
BMC Neurosci ; 24(1): 37, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474902

RESUMEN

Hydrogen (H2) can protect against blood‒brain barrier (BBB) damage in sepsis-associated encephalopathy (SAE), but the mechanism is still unclear. We examined whether it is related to PPARα and its regulatory targets, ABC efflux transporters. After injection with DMSO/GW6471 (a PPARα inhibitor), the mice subjected to sham/caecal ligation and puncture (CLP) surgery were treated with H2 for 60 min postoperation. Additionally, bEnd.3 cells were grown in DMSO/GW6471-containing or saline medium with LPS. In addition to the survival rates, cognitive function was assessed using the Y-maze and fear conditioning tests. Brain tissues were stained with TUNEL and Nissl staining. Additionally, inflammatory mediators (TNF-α, IL-6, HMGB1, and IL-1ß) were evaluated with ELISA, and PPARα, ZO-1, occludin, VE-cadherin, P-gp, BCRP and MRP2 were detected using Western blotting. BBB destruction was assessed by brain water content and Evans blue (EB) extravasation. Finally, we found that H2 improved survival rates and brain dysfunction and decreased inflammatory cytokines. Furthermore, H2 decreased water content in the brain and EB extravasation and increased ZO-1, occludin, VE-cadherin and ABC efflux transporters regulated by PPARα. Thus, we concluded that H2 decreases BBB permeability to protect against brain dysfunction in sepsis; this effect is mediated by PPARα and its regulation of ABC efflux transporters.


Asunto(s)
Disfunción Cognitiva , Encefalopatía Asociada a la Sepsis , Ratones , Animales , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Barrera Hematoencefálica , PPAR alfa , Hidrógeno/farmacología , Transportadoras de Casetes de Unión a ATP , Células Endoteliales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Ocludina , Dimetilsulfóxido , Proteínas de Neoplasias , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología
18.
Diabet Med ; 40(1): e14890, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35616949

RESUMEN

AIMS: The pathogenesis of diabetic peripheral neuropathy (DPN) is complex, and its treatment is extremely challenging. MicroRNA-7a-5p (miR-7a-5p) has been widely reported to alleviate apoptosis and oxidative stress in various diseases. This study aimed to investigate the mechanism of miR-7a-5p in DPN. METHODS: DPN cell model was constructed with high-glucose-induced RSC96 cells. Cell apoptosis and viability were detected by flow cytometry analysis and cell counting kit-8 (CCK-8) assay respectively. The apoptosis and Jun N-terminal kinase (JNK)/c-JUN signalling pathway-related proteins expression were detected by Western blotting. The intracellular calcium content and oxidative stress levels were detected by flow cytometry and reagent kits. Mitochondrial membrane potential was evaluated by tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) staining. The targeting relationship between miR-7a-5p and voltage-dependent anion-selective channel protein 1 (VDAC1) was determined by RNA pull-down assay and dual-luciferase reporter gene assay. The streptozotocin (STZ) rat model was constructed to simulate DPN in vivo. The paw withdrawal mechanical threshold (PTW) was measured by Frey capillary line, and the motor nerve conduction velocity (MNCV) was measured by electromyography. RESULTS: MiR-7a-5p expression was decreased, while VDAC1 expression was increased in HG-induced RSC96 cells and STZ rats. In HG-induced RSC96 cells, miR-7a-5p overexpression promoted cell proliferation, inhibited apoptosis, down-regulated calcium release, improved mitochondrial membrane potential and repressed oxidative stress response. MiR-7a-5p negatively regulated VDAC1 expression. VDAC1 knockdown improved cell proliferation activity, suppressed cell apoptosis and mitochondrial dysfunction by inhibiting JNK/c-JUN pathway activation. MiR-7a-5p overexpression raised PTW, restored MNCV and reduced oxidative stress levels and nerve cell apoptosis in STZ rats. CONCLUSION: MiR-7a-5p overexpression ameliorated mitochondrial dysfunction and inhibited apoptosis in DPN by regulating VDAC1/JNK/c-JUN pathway.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , MicroARNs , Animales , Ratas , Apoptosis , Calcio/efectos adversos , Calcio/metabolismo , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Estreptozocina , Canal Aniónico 1 Dependiente del Voltaje
19.
Diabet Med ; 40(1): e14964, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130801

RESUMEN

BACKGROUND: Diabetic peripheral neuropathy (DPN) is a common neurological complication of diabetes mellitus without efficient interventions. Both lysine demethylase 5B (KDM5B) and sirtuin-3 (SIRT3) have been found to regulate islet function and glucose homeostasis. KDM5B was predicted to bind to the SIRT3 promoter by bioinformatics. Here, we investigated whether KDM5B affected DPN development via modulating SIRT3. METHODS: The db/db mice and high glucose-stimulated Schwann cells (RSC96) were used as in vivo and in vitro models of DPN, respectively. Glucose level, glucose and insulin tolerance of mice were measured. Neurological function was evaluated by motor nerve conduction velocity (MNCV), tactile allodynia assay and thermal sensitivity assay. Adenosine triphosphate level, oxygen consumption rate, extracellular acidification rate, ß-oxidation rate, acetyl-CoA level, acetylation levels and activities of long-chain acyl CoA dehydrogenase (LCAD) and pyruvate dehydrogenase (PDH) were detected. Methyl thiazolyl tetrazolium assay was adopted to determine cell viability. Reactive oxygen species (ROS) production was detected by MitoSox staining. Western blotting for measuring target protein levels. Molecular mechanisms were investigated by co-immunoprecipitine (Co-IP), chromatin immunoprecipitation (ChIP) and luciferase reporter assay. RESULTS: KDM5B was up-regulated, while SIRT3 was down-regulated in DPN models. SIRT3 overexpression or AMPK activation ameliorated mitochondrial metabolism dysfunction and ROS overproduction during DPN. KDM5B overexpression triggered mitochondrial metabolism disorder and oxidative stress via directly transcriptional inhibiting SIRT3 expression by demethylating H3K4me3 or indirectly repressing AMPK pathway-regulated SIRT3 expression. CONCLUSION: KDM5B contributes to DPN via regulating SIRT3-mediated mitochondrial glucose and lipid metabolism. KDM5B inhibition may be an effective intervention for DPN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Sirtuina 3 , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metabolismo de los Lípidos , Lisina , Proteínas Nucleares , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA