RESUMEN
Objective: To explore the related mechanism of acupuncture affecting obesity by regulating inflammation using bioinformatics methods. Methods: The genes related to obesity, inflammation, and acupuncture and inflammation were mined using GenCLiP 3, and the intersecting genes were extracted using Venn diagram. The DAVID database was employed for pathway enrichment analysis and functional annotation of coexpressed genes. Then, the protein-protein interaction (PPI) network was constructed with the STRING database and visualized by the Cytoscape software and screened out important hub genes. Finally, the Boxplot and Survival Analysis of the hub genes in various cancers were performed by GEPIA. Results: 755 genes related to obesity and inflammation and 38 genes related to acupuncture and inflammation were identified, and 24 coexpressed genes related to obesity, inflammation, and acupuncture were extracted from the Venn diagram. Eight hub genes including interleukin-6 (IL-6), interleukin-10 (IL-10), Toll-like receptor 4 (TLR4), signal transduction and transcriptional activation factor 3 (STAT3), C-X-C motif chemokine 10 (CXCL10), interleukin-17A (IL-17A), prostaglandin peroxide synthesis-2 (PTGS2), signal transistors, and transcriptional activation factor 6 (STAT6) were identified by gene ontology (GO), Kyoto Encyclopedia of Genes (KEGG), and PPI network analysis. Among them, IL-6 is suggested to play an essential role in the treatment of obesity and inflammation by acupuncture, and IL-6 was significant in both Boxplot and Survival Analysis of pancreatic cancer (PAAD). Therefore, in this study, the core gene, IL-6 was used as the breakthrough point to explore the possible mechanism of acupuncture in treating obesity and pancreatic cancer by regulating IL-6. Conclusion: (1) Acupuncture can regulate the expression of IL-6 through the TLR4/nuclear factor-κB (NF-κB) pathway, thereby alleviating inflammation, which can be used as a potential strategy for the treatment of obesity. (2) IL-6/STAT3 is closely related to the occurrence, development, and metastasis of pancreatic cancer. Acupuncture affecting pancreatic cancer through TLR4/NF-κB/IL-6/STAT3 pathway may be a potential method for the treatment of pancreatic cancer.
Asunto(s)
Terapia por Acupuntura , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Minería de Datos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Inflamación/genética , Inflamación/terapia , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Obesidad/genética , Obesidad/terapia , Neoplasias Pancreáticas/genética , Receptor Toll-Like 4/metabolismo , Neoplasias PancreáticasRESUMEN
This paper presents a wide band compact high isolation microelectromechanical systems (MEMS) switch implemented on a coplanar waveguide (CPW) with three ohmic switch cells, which is based on the series-shunt switch design. The ohmic switch shows a low intrinsic loss of 0.1 dB and an isolation of 24.8 dB at 6 GHz. The measured average pull-in voltage is 28 V and switching time is 47 µs. In order to shorten design period of the high isolation switch, a structure-based small-signal model for the 3-port ohmic MEMS switch is developed and parameters are extracted from the measured results. Then a high isolation switch has been developed where each 3-port ohmic MEMS switch is closely located. The agreement of the measured and modeled radio frequency (RF) performance demonstrates the validity of the electrical equivalent model. Measurements of the series-shunt switch indicate an outstanding isolation of more than 40 dB and a low insertion loss of 0.35 dB from DC to 12 GHz with total chip size of 1 mm × 1.2 mm.