Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Environ Manage ; 345: 118793, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619380

RESUMEN

To identify possible dominating processes involved in soil microbial community assembly, dissolved organic matter (DOM) and multi-nutrient cycling (MNC) interactions and contribute to understanding of climate change effects on these important cycles, we investigated the interaction of soil chemistry, DOM components and microbial communities in five vegetation zones - ranging from evergreen broad-leaved forest to alpine meadow - along an elevation gradient of 290-1960 m in the Wuyi Mountains, Fujian Province, China. Soil DOM composition and microbial community assembly were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Illumina MiSeq high-throughput sequencing, respectively. Sloan's neutral model and the modified stochasticity ratio were used to infer community assembly processes. Key microbial drivers of the soil MNC index were identified from partial least squares path models. Our results showed that soil DOM composition is closely related to the vegetation types along an elevation gradient, the structure and composition of the microbial community, and soil nutrient status. Overall, values of the double bond equivalent (DBE), modified aromaticity index (AImod) increased, and H/C ratio and molecular lability boundary (MLBL) percentage decreased with elevation. Lignins/CRAM-like structures compounds dominated soil DOM in each vegetation type and its relative abundance decreased with elevation. Aliphatic/protein and lipids components also decreased, but the relative abundance of aromatic structures and tannin increased with elevation. The alpha diversity index of soil bacteria gradually decreased with elevation, with deterministic processes dominating the microbial community assembly in the highest elevation zone. Bacterial communities were conducive to the decomposition of labile degradable DOM compounds (H/C ≥ 1.5) at low elevation. In the cooler and wetter conditions at higher-elevation sites the relative abundance of potentially resistant soil DOM components (H/C < 1.5) gradually increased. Microbial community diversity and composition were important predictors of potential soil nutrient cycling. Although higher elevation sites have higher nutrient cycling potential, soil DOM was assessed to be a more stable carbon store, with apparent lower lability and bioavailability than at lower elevation sites. Overall, this study increases understanding of the potential linkage between soil microbial community, multiple nutrient cycling and DOM fate in subtropical mountain ecosystems that can help predict the effect of climate change on soil carbon sequestration and thus inform ecosystem management.


Asunto(s)
Microbiota , Suelo , Suelo/química , Materia Orgánica Disuelta , Bosques , China
2.
Ecotoxicol Environ Saf ; 207: 111513, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254393

RESUMEN

The responses of pure strains to contaminant (i.e., estrone, E1) exposure have been widely studied. However, few studies about the responses of multispecies microbial aggregates (e.g., periphytic biofilm) to E1 exposure are available. In this study, the changes in physiological activity and community composition of periphytic biofilms before and after E1 exposure were investigated. The results showed that periphytic biofilms exhibited high adaptability to E1 exposure at a concentration of 0.5 mg L-1 based on physiological results. The increase in productivity of extracellular polymeric substances (EPS) after exposure to E1 was the main factor preventing association between E1 and microbial cells. The increase in the activity of superoxide dismutase (SOD) and ATP enzyme activity and the change in the co-occurrence pattern of microbial communities (increasing the relative abundance of Xanthomonadaceae and Cryomorphacea) also protected biofilms from E1 exposure. However, exposure to a high concentration of E1 (>10 mg L-1) significantly decreased EPS productivity and metabolic activity due to the excessive accumulation of reactive oxygen species. In addition, the abundance of some sensitive species, such as Pseudanabaenaceae, decreased sharply at this concentration. Overall, this study highlighted the feasibility of periphytic biofilms to adapt to E1 exposure at low concentrations in aquatic environments.


Asunto(s)
Biopelículas/efectos de los fármacos , Estrona/toxicidad , Contaminantes Químicos del Agua/toxicidad , Biopelículas/crecimiento & desarrollo , Cianobacterias , Matriz Extracelular de Sustancias Poliméricas , Microbiota , Agua
3.
Environ Geochem Health ; 42(12): 4327-4340, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31897869

RESUMEN

In order to better study the influence of land use on the concentration and distribution of organic contaminants in urban areas, the concentrations of 16 principal polycyclic aromatic hydrocarbons (PAHs) were determined on soil samples collected at three depths (0~10 cm, 10~20 cm and 20~30 cm) from urban greenland areas of 6 functional zones: residential zone (RZ), business zone (BZ), industrial zone (IZ), cultural and educational zone (CZ), urban park (UP) and urban rural forest (URF) of Nanjing, China. Results showed that the average concentration of ∑PAHs in the urban greenland of Nanjing (499.47 ng/g) was comparable to the value reported for other cities under similar conditions. Acenaphthene was the dominant compound (46.2% of the ∑PAHs), and low molecular weight PAHs (LPAHs) represented the largest share of ∑PAHs. Concentrations of ∑PAHs in 6 function zones were different, with the highest value in IZ (954.33 ng/g) and lowest value in URF (147.81 ng/g). The soil showed the highest ∑PAHs contamination in the layer 10~20 cm in all zones (on average 547.01 ng/g). ∑PAHs of IZ showed the highest values in all soil layers. Isomer ratio and factor analysis were used to determine the source of PAHs in soil. Petroleum combustion (PC), coal and biomass combustion (CBC), mixed (M) and petroleum (P) sources were finally identified as the four main sources of PAHs in Nanjing urban greenland soil, accounting for 50.2%, 14.9%, 8.4% and 6.6%, respectively. Bap toxic equivalent (TEQBap) was used to analyze the ecological risk. TEQBap was 20.59 ng/g in total zones (TZ), below the threshold for multipurpose soil of Dutch legislation (32.96 ng/g), but 69% of samples exceeded this threshold. TEQBap of different functional zones is ordered as: IZ (43.62 ng/g)>RZ (23.89 ng/g) > BZ (20.62 ng/g) > CZ (19. 93 ng/g) > UP (12.97 ng/g) > URF (2.01 ng/g). In the industrial area, more than 97% of TEQBap depended on seven carcinogenic PAHs (∑PAH7c), which indicated that IZ had high ecological risk. Lifetime risk of cancer (ILCR) model was used to assess the health risk of ∑PAHs. ILCRs ranked as following: children > youth > adults, with soil oral intake determining the highest cancer risk, followed by skin contact and breath intake. ILCRs of children were in high cancer risk range, with values of 3.77 × 10-4 (for boy) and 3.87 × 10-4 (for girl), while ILCRs of youth and adults were in an acceptable range; ILCRs were highest in IZ, followed by RZ, BZ, CZ, UP and URF. The soil PAHs analysis in different function greenland zones of Nanjing showed that land use influenced the concentration and distribution of PAHs in soils. This difference should be taken into account in the urban greenland planning and management to reduce the risks for the environment and human health.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , China , Monitoreo del Ambiente , Medición de Riesgo
4.
Sci Total Environ ; 926: 171943, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527546

RESUMEN

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Asunto(s)
Cunninghamia , Microbiota , Materia Orgánica Disuelta , Nitratos/análisis , Lignina/metabolismo , Taninos/análisis , Taninos/metabolismo , Suelo/química , Compuestos Orgánicos/análisis , Compuestos de Azufre/metabolismo , Nitrógeno/análisis , Carbono/análisis , Hidrógeno/análisis , Oxígeno/análisis
5.
Microbiol Spectr ; 12(3): e0135523, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334388

RESUMEN

In subtropical forest ecosystems with few phosphorus (P) inputs, P availability and forest productivity depend on soil organic P (Po) mineralization. However, the mechanisms by which the microbial community determines the status and fate of soil Po mineralization remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest (SNF), mixed planting, and monoculture forest of Chinese fir. The P fractions, Po-mineralization ability, and microbial community in the soils of different forest types were characterized. In addition, we defined Po-mineralizing taxa with the potential to interact with the soil microbial community to regulate Po mineralization. We found that a higher labile P content persisted in SNF and was positively associated with the Po-mineralization capacity of the soil microbial community. In vitro cultures of soil suspensions revealed that soil Po mineralization of three forest types was distinguished by differences in the composition of fungal communities. We further identified broad phylogenetic lineages of Po-mineralizing fungi with a high intensity of positive interactions with the soil microbial community, implying that the facilitation of Po-mineralizing taxa is crucial for soil P availability. Our dilution experiments to weaken microbial interactions revealed that in SNF soil, which had the highest interaction intensity of Po-mineralizing taxa with the community, Po-mineralization capacity was irreversibly lost after dilution, highlighting the importance of microbial diversity protection in forest soils. In summary, this study demonstrates that the interactions of Po-mineralizing microorganisms with the soil microbial community are critical for P availability in subtropical forests.IMPORTANCEIn subtropical forest ecosystems with few phosphorus inputs, phosphorus availability and forest productivity depend on soil organic phosphorus mineralization. However, the mechanisms by which the microbial community interactions determine the mineralization of soil organic phosphorus remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest, mixed planting, and monoculture forest of Chinese fir. We found that a higher soil labile phosphorus content was positively associated with the organic phosphorus mineralization capacity of the soil microbial community. Soil organic phosphorus mineralization of three forest types was distinguished by the differences in the composition of fungal communities. The positive interactions between organic phosphorus-mineralizing fungi and the rest of the soil microbial community facilitated organic phosphorus mineralization. This study highlights the importance of microbial diversity protection in forest soils and reveals the microbial mechanism of phosphorus availability maintenance in subtropical forest ecosystems.


Asunto(s)
Microbiota , Suelo , Fósforo , Filogenia , Bosques , Interacciones Microbianas , Microbiología del Suelo , Hongos , Nitrógeno , Carbono
6.
Sci Total Environ ; 946: 174423, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969114

RESUMEN

Exploring the influences of nitrogen deposition on soil carbon (C) flux is necessary for predicting C cycling processes; however, few studies have investigated the effects of nitrogen deposition on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) across urban-rural forests. In this study, a 4-year simulated nitrogen deposition experiment was conducted by treating the experimental plots with 0, 50, or 100 kg·ha-1·year-1 of nitrogen to check out the mechanisms of nitrogen deposition on Rs, Ra, and Rh in urban-rural forests. Our finding indicated a positive association between soil temperature and Rs. Soil temperature sensitivity was significantly suppressed in the experimental plots treated with 100 kg·ha-1·year-1 of nitrogen only in terms of the urban forest Rs and Ra and the rural forest Ra. Nitrogen treatment did not significantly increase Rs and had different influencing mechanisms. In urban forests, nitrogen addition contributed to Rh by increasing soil microbial biomass nitrogen and inhibited Ra by increasing soil ammonium­nitrogen concentration. In suburban forests, the lack of response of Rh under nitrogen addition was due to the combined effects of soil ammonium­nitrogen and microbial biomass nitrogen; the indirect effects from nitrate­nitrogen also contributed to a divergent effect on Ra. In rural forests, the soil pH, dissolved organic C, fine root biomass, and microbial biomass C concentration were the main factors mediating Rs and its components. In summary, the current rate of nitrogen deposition is unlikely to result in significant increases in soil C release in urban-rural forests, high nitrogen deposition is beneficial for reducing the temperature sensitivity of Rs in urban forests. The findings grant a groundwork for predicting responses of forest soil C cycling to global change in the context of urban expansion.

7.
Microbiol Res ; 285: 127757, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759379

RESUMEN

Soil nitrogen (N) fixation, driven by microbial reactions, is critical to support the entrance of nitrogen in nutrient poor and pioneer ecosystems. However, how and why N fixation and soil diazotrophs evolve as forests develop remain poorly understood. Here, we used a 60-year forest rewilding chronosequence and found that soil N fixation activity gradually decreased with increasing forest age, experiencing dramatic drops of 64.8% in intermediate stages and 93.0% in the oldest forests. Further analyses revealed loses in diazotrophic diversity and a significant reduction in the abundance of important diazotrophs (e.g., Desulfovibrio and Pseudomonas) as forest develops. This reduction in N fixation, and associated shifts in soil microbes, was driven by acidification and increases in N content during forest succession. Our results provide new insights on the life history of one of the most important groups of soil organisms in terrestrial ecosystems, with consequences for understanding the buildup of nutrients as forest soil develops.


Asunto(s)
Bosques , Fijación del Nitrógeno , Nitrógeno , Microbiología del Suelo , Suelo , Suelo/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Ecosistema , Bacterias/metabolismo , Clima Tropical , Biodiversidad , Árboles
8.
Sci Total Environ ; 902: 166451, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611720

RESUMEN

The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2-)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2-, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggested that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are dominant in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight NO2- significantly stimulates HONO and NOx emissions from dryland agricultural soils, dominated by nitrification. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.

9.
Ecotoxicology ; 21(8): 2297-305, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22975893

RESUMEN

Glyphosate (GPS) is a wildly-used pesticide throughout the world. It affects metal behaviors in soil-water system as its functional groups such as amine, carboxylate and phosphonate can react with metal ions to form metal complexes. The reaction will result in the decreasing of heavy metal bioavailability. A laboratory experiment was conducted to investigate the interactions between GPS and copper (Cu) on the acute toxicity of soil invertebrate earthworm (Eisenia fetida), which was exposed to aqueous solutions for 48 h with different mixing concentrations of Cu and GPS (technical-grade Gly acid). The mortality rates, Cu uptake by earthworm, and some biomarkers such as superoxide dismutase (SOD) activity, glutathione (GSH) content, and acetylcholinesterase (AchE) activity were measured. The mortality rates and whole-worm metal burdens increased significantly with the increasing Cu concentration in solution. However, toxicity of GPS to earthworms was not observed in this study. Furthermore, the presence of GPS could significantly reduce the acute toxicity of Cu to earthworms. The mortality rates decreased sharply and the uptake of Cu was nearly halted in the presence of GPS. In addition, the SOD activity, GSH content, and AchE activity almost declined to the levels of the control. These results demonstrate that GPS could control the toxicity as well as the bioavailability of heavy metals in soil solutions where both GPS and heavy metals often coexist.


Asunto(s)
Cobre/toxicidad , Glicina/análogos & derivados , Oligoquetos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Disponibilidad Biológica , Cobre/farmacocinética , Glicina/farmacocinética , Glicina/toxicidad , Oligoquetos/metabolismo , Contaminantes del Suelo/farmacocinética , Espectrofotometría , Espectrofotometría Atómica , Glifosato
10.
Ying Yong Sheng Tai Xue Bao ; 32(1): 93-102, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33477217

RESUMEN

Soil microorganisms, which are sensitive to environmental changes, affect soil nutrient cycling and play an important role in the biogeochemical cycling. To understand the changes of soil microorganisms in subtropical forest across the urban-rural environmental gradient, we analyzed the differences in soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial community functional diversitiy in Dashu Mountain National Forest Park (urban forest), Zipeng Mountain National Forest Park (suburban forest) in Hefei and Wanfo Mountain(rural forest) in Luan City. Results showed that soil MBC followed an order of rural natural forest (115.07 mg·kg-1) > suburban forest (101.68 mg·kg-1) > urban forest (82.73 mg·kg-1), soil MBN followed an order of rural natural forest (57.73 mg·kg-1) > urban forest (31.57 mg·kg-1) > suburban forest (29.01 mg·kg-1), soil microbial metabolic activities (AWCD), McIntosh index (U) were shown as rural natural forest > suburban forest > urban forest. The main carbon sources used by soil microbial communities in those forests were carboxylic acids, amino acids and carbohydrates, with weak utilization capacity for polyamines and polyphenols. The utilization capacity of soil microorganisms to amino acids, carboxylic acids, polymers and polyphenols followed the order of rural natural forest > suburban forest > urban forest. There were significant spatial variations in the functional characteristics of soil microbial communities under urban-rural environmental gradient, with Tween 80 and ß-methyl-D-Glucoside being the characteristic carbon sources as the influencing factors. Soil pH was significantly positively correlated with the microbial McIntosh index and AWCD value, while soil ammonium nitrogen (NH4+-N) showed a significant positive correlation with microbial Shannon diversity index and AWCD value. There was a negative correlation between the microbial Simpson index and soil nitrate nitrogen (NO3--N). Soil pH, NH4+-N and NO3--N were the main factors affecting diversity index of microbial communities. The results suggested that there were significant differences in microbial community characteristics of forest soil in urban-rural environmental gradient forests, and that the metabolic potential and functional diversity of soil microbial community in urban forests were weaker than that of natural forests.


Asunto(s)
Microbiota , Suelo , Biomasa , Carbono/análisis , China , Bosques , Nitrógeno/análisis , Microbiología del Suelo
11.
PLoS One ; 15(7): e0235795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645115

RESUMEN

To investigate the growth, physiological changes and mechanism of drought resistance of Camellia oleifera GWu-2 under drought stress conditions, changes in the main growth and physiological indices of GWu-2 under different water gradients were studied. Factor analysis was used to study the differences between indicators under different water gradients, and correlation analysis was implemented to analyze the relationship between different factors. We observed that the growth state, enzyme secretion, stomatal morphology and leaf osmotic adjustment substances were significantly affected by drought stress. In particular, increases in leaf abscisic acid (ABA), indole acetic acid (IAA) and methyl jasmonate (MeJA) contents under drought stress were negatively correlated with the stomatal opening degree, and the ratio of ZR/GA3 was significantly correlated with the growth and physiological indicators of GWu-2, indicating that different hormones respond differently to drought stress and have different functions in the growth regulation and drought resistance of GWu-2. We concluded that the drought resistance mechanism of GWu-2 was controlled by maintaining root growth to obtain the necessary water, increasing the contents of osmotic substances of leaves to maintain water holding capacity, reducing the transpiration of water by increasing leaf ABA, IAA and MeJA content to close stomata and reducing the damage caused by drought by increasing the activity of superoxide dismutase (SOD).


Asunto(s)
Aclimatación , Camellia/fisiología , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Camellia/crecimiento & desarrollo , Ciclopentanos/metabolismo , Sequías , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Estrés Fisiológico , Agua/metabolismo
12.
Ying Yong Sheng Tai Xue Bao ; 31(3): 744-752, 2020 Mar.
Artículo en Zh | MEDLINE | ID: mdl-32537968

RESUMEN

Urban forest is an important carbon pool, soil respiration of which is an important part of terrestrial carbon cycle. To understand the dynamics and influencing factors of soil respiration in urban forest under the background of increasing nitrogen deposition, we conducted dynamic observation on soil respiration rate, temperature, moisture and chemical properties by adding 0 (CK), 50 (LN), 100 (HN) kg N·m-2·a-1 ammonium nitrate to a typical urban forest. The results showed that soil respiration had significant seasonal variation, which was not affected by nitrogen addition. Soil respiration was significantly correlated with soil temperature. The interaction between soil temperature and soil moisture could better explain the variation of soil respiration. Nitrogen addition changed temperature sensitivity of soil respiration, with the order of Q10 values as LN (2.12) > CK (2.10) > HN (2.05). Soil nitrate concentration, soil soluble organic carbon, pH, soil carbon to nitrogen ratio had significant correlation with soil respiration. The positive effect of nitrogen deposition on soil respiration was mainly in the growing season, with slightly inhibitive effect in the non-growing season.


Asunto(s)
Nitrógeno , Suelo , Ciclo del Carbono , China , Bosques , Temperatura
13.
Bioresour Technol ; 248(Pt B): 61-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28712782

RESUMEN

This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL-1. Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress.


Asunto(s)
Biopelículas , Reactores Biológicos , Bacterias , Diatomeas , Metales Pesados
14.
Environ Sci Pollut Res Int ; 23(13): 12976-82, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26996909

RESUMEN

Batch experiments were conducted to investigate cadmium(II) (Cd(II)) adsorption by two variable-charge soils (an Oxisol and an Ultisol) as influenced by the presence of pectin. When pectin dosage was less than 30 g kg(-1), the increase in Cd(II) adsorption with the increasing dose of pectin was greater than that when the pectin dosage was >30 g kg(-1). Although both Langmuir and Freundlich equations fitted the adsorption isotherms of Cd(II) and electrostatic adsorption data of Cd(II) by the two soils well, the Langmuir equation showed a better fit. The increase in the maximum total adsorption of Cd(II) induced by pectin was almost equal in both the soils, whereas the increase in the maximum electrostatic adsorption of Cd(II) was greater in the Oxisol than in the Ultisol because the former contained greater amounts of free Fe/Al oxides than the latter, which, in turn, led to a greater increase in the negative charge on the Oxisol. Therefore, the presence of pectin induced the increase in Cd(II) adsorption by the variable-charge soils mainly through the electrostatic mechanism. Pectin increased the adsorption of Cd(II) by the variable-charge soils and thus decreased the activity and mobility of Cd(II) in these soils.


Asunto(s)
Cadmio/análisis , Pectinas/química , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Cadmio/química , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/química , Electricidad Estática
15.
Environ Sci Pollut Res Int ; 22(24): 19687-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26278899

RESUMEN

The influence of pectin on Cu(II) adsorption by two variable-charge soils (an Oxisol and an Ultisol) was investigated. Pectin increased the adsorption, and the extent of adsorption increased linearly with the dose of pectin, being greater in the Oxisol than that in the Ultisol because the adsorption of pectin by the Oxisol was greater. Both Langmuir and Freundlich equations fitted the adsorption isotherms of Cu(II) for both soils well. The fitting parameters of both equations indicated that pectin increased not only the adsorption capacity of the soils for Cu(II) but also the adsorption strength of Cu(II). The effect of pectin decreased with rising pH in the pH range 3.5-6.0, although the extent of electrostatic adsorption of Cu(II) by both soils was markedly greater over the pH range. Fourier-transformed infrared spectroscopy analysis and zeta potential measurement of soil colloids indicated that adsorption of pectin by the soils made the negative charge on both soils more negative, which was responsible for the increase in the electrostatic adsorption of Cu(II) induced by the addition of pectin. In conclusion, pectin-enhanced adsorption of Cu(II) especially at low pH would be beneficial to the soils as it would decrease the activity and mobility of Cu(II) in acidic variable-charge soils.


Asunto(s)
Cobre/metabolismo , Pectinas/farmacología , Contaminantes del Suelo/metabolismo , Suelo/química , Adsorción , Biotransformación , China , Coloides , Concentración de Iones de Hidrógeno
16.
Environ Pollut ; 180: 71-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23733011

RESUMEN

Glyphosate (GPS) and copper (Cu) are common pollutants in soils, and commonly co-exist. Due to the chemical structure of GPS, it can form complexes of heavy metals and interface their bioavailability in soil environment. In order to explore the interactions between GPS and Cu, subacute toxicity tests of Cu and GPS on soil invertebrate earthworms (Eisenia fetida) were conducted. The relative weight loss and whole-worm metal burdens increased significantly with the increasing exposure concentration of Cu, while the toxicity of GPS was insignificant. The joint toxicity data showed that the relative weight loss and the uptake of Cu, as well as the superoxide dismutase, catalase and malondialdehyde activities, were significantly alleviated in the present of GPS, which indicated that GPS could reduce the toxicity and bioavailability of Cu in the soil because of its strong chelating effects.


Asunto(s)
Cobre/toxicidad , Glicina/análogos & derivados , Contaminantes del Suelo/toxicidad , Animales , Glicina/toxicidad , Oligoquetos , Glifosato
17.
Environ Geochem Health ; 30(1): 67-77, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17610026

RESUMEN

Laboratory incubation trials were conducted to investigate the effects of several factors on the persistence as well as the dissipation of three synthetic pyrethroid pesticides in red soils obtained from the Yangtze River Delta region in China. The pyrethroids selected for investigation were cypermethrin, fenvalerate, and deltamethrin, which continue to be used extensively to control pests on farmland in the region despite the concern that they are highly toxic to certain vertebrate and mammalian species. Data from this exploratory study showed that the dissipation half-lives (T (1/2)) tended to correlate with soil pH and soil organic matter contents, but not with soil cation-exchange capacity. The T (1/2) values were seen to be shorter in soil samples fertilized with glucose than without. The rates of pyrethroid dissipation also tended to increase with increasing initial soil concentration, but were largely unaffected by whether the pesticides were present in the soil separately or as a mixture. Another noteworthy observation is that microbial activity appeared to dominate the degradation process. Findings of this type could offer valuable clues for future research directions in reducing pesticide persistence in soil, which in turn could lead to the ultimate reduction of environmental pollution caused by pyrethroid application to farmland in the region.


Asunto(s)
Insecticidas/análisis , Residuos de Plaguicidas/análisis , Piretrinas/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , China , Semivida , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA