Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 298(4): 101759, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202649

RESUMEN

Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Antígenos CD/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cadenas alfa de Integrinas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Lesiones del Sistema Vascular/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 41(11): 2756-2769, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551592

RESUMEN

Objective: Angiogenic factor AGGF1 (angiogenic factor with G-patch and FHA [Forkhead-associated] domain 1) promotes angiogenesis as potently as VEGFA (vascular endothelial growth factor A) and regulates endothelial cell (EC) proliferation, migration, specification of multipotent hemangioblasts and venous ECs, hematopoiesis, and vascular development and causes vascular disease Klippel-Trenaunay syndrome when mutated. However, the receptor for AGGF1 and the underlying molecular mechanisms remain to be defined. Approach and Results: Using functional blocking studies with neutralizing antibodies, we identified [alpha]5[beta]1 as the receptor for AGGF1 on ECs. AGGF1 interacts with [alpha]5[beta]1 and activates FAK (focal adhesion kinase), Src (proto-oncogene tyrosine-protein kinase), and AKT (protein kinase B). Functional analysis of 12 serial N-terminal deletions and 13 C-terminal deletions by every 50 amino acids mapped the angiogenic domain of AGGF1 to a domain between amino acids 604-613 (FQRDDAPAS). The angiogenic domain is required for EC adhesion and migration, capillary tube formation, and AKT activation. The deletion of the angiogenic domain eliminated the effects of AGGF1 on therapeutic angiogenesis and increased blood flow in a mouse model for peripheral artery disease. A 40-mer or 15-mer peptide containing the angiogenic domain blocks AGGF1 function, however, a 15-mer peptide containing a single amino acid mutation from -RDD- to -RGD- (a classical RGD integrin-binding motif) failed to block AGGF1 function. Conclusions: We have identified integrin [alpha]5[beta]1 as an EC receptor for AGGF1 and a novel AGGF1-mediated signaling pathway of [alpha]5[beta]1-FAK-Src-AKT for angiogenesis. Our results identify an FQRDDAPAS angiogenic domain of AGGF1 crucial for its interaction with [alpha]5[beta]1 and signaling.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Integrina alfa5beta1/metabolismo , Isquemia/metabolismo , Neovascularización Fisiológica , Células 3T3-L1 , Inductores de la Angiogénesis/farmacología , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/farmacología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Integrina alfa5beta1/genética , Isquemia/tratamiento farmacológico , Isquemia/genética , Isquemia/fisiopatología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Familia-src Quinasas/metabolismo
3.
J Cachexia Sarcopenia Muscle ; 14(2): 978-991, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696895

RESUMEN

BACKGROUND: Skeletal muscle atrophy is a common condition without a pharmacologic therapy. AGGF1 encodes an angiogenic factor that regulates cell differentiation, proliferation, migration, apoptosis, autophagy and endoplasmic reticulum stress, promotes vasculogenesis and angiogenesis and successfully treats cardiovascular diseases. Here, we report the important role of AGGF1 in the pathogenesis of skeletal muscle atrophy and attenuation of muscle atrophy by AGGF1. METHODS: In vivo studies were carried out in impaired leg muscles from patients with lumbar disc herniation, two mouse models for skeletal muscle atrophy (denervation and cancer cachexia) and heterozygous Aggf1+/- mice. Mouse muscle atrophy phenotypes were characterized by body weight and myotube cross-sectional areas (CSA) using H&E staining and immunostaining for dystrophin. Molecular mechanistic studies include co-immunoprecipitation (Co-IP), western blotting, quantitative real-time PCR analysis and immunostaining analysis. RESULTS: Heterozygous Aggf1+/- mice showed exacerbated phenotypes of reduced muscle mass, myotube CSA, MyHC (myosin heavy chain) and α-actin, increased inflammation (macrophage infiltration), apoptosis and fibrosis after denervation and cachexia. Intramuscular and intraperitoneal injection of recombinant AGGF1 protein attenuates atrophy phenotypes in mice with denervation (gastrocnemius weight 81.3 ± 5.7 mg vs. 67.3 ± 5.1 mg for AGGF1 vs. buffer; P < 0.05) and cachexia (133.7 ± 4.7 vs. 124.3 ± 3.2; P < 0.05). AGGF1 expression undergoes remodelling and is up-regulated in gastrocnemius and soleus muscles from atrophy mice and impaired leg muscles from patients with lumbar disc herniation by 50-60% (P < 0.01). Mechanistically, AGGF1 interacts with TWEAK (tumour necrosis factor-like weak inducer of apoptosis), which reduces interaction between TWEAK and its receptor Fn14 (fibroblast growth factor-inducing protein 14). This leads to inhibition of Fn14-induced NF-kappa B (NF-κB) p65 phosphorylation, which reduces expression of muscle-specific E3 ubiquitin ligase MuRF1 (muscle RING finger 1), resulting in increased MyHC and α-actin and partial reversal of atrophy phenotypes. Autophagy is reduced in Aggf1+/- mice due to inhibition of JNK (c-Jun N-terminal kinase) activation in denervated and cachectic muscles, and AGGF1 treatment enhances autophagy in two atrophy models by activating JNK. In impaired leg muscles of patients with lumbar disc herniation, MuRF1 is up-regulated and MyHC and α-actin are down-regulated; these effects are reversed by AGGF1 by 50% (P < 0.01). CONCLUSIONS: These results indicate that AGGF1 is a novel regulator for the pathogenesis of skeletal muscle atrophy and attenuates skeletal muscle atrophy by promoting autophagy and inhibiting MuRF1 expression through a molecular signalling pathway of AGGF1-TWEAK/Fn14-NF-κB. More importantly, the results indicate that AGGF1 protein therapy may be a novel approach to treat patients with skeletal muscle atrophy.


Asunto(s)
Desplazamiento del Disco Intervertebral , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Inductores de la Angiogénesis/metabolismo , Caquexia/patología , Actinas , Desplazamiento del Disco Intervertebral/complicaciones , Desplazamiento del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/patología , Atrofia Muscular/patología , Músculo Esquelético/patología , Factor de Necrosis Tumoral alfa , Proteínas Angiogénicas/metabolismo
4.
Nat Commun ; 14(1): 2265, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081014

RESUMEN

Thoracic aortic aneurysm (TAA) is a localized or diffuse dilatation of the thoracic aortas, and causes many sudden deaths each year worldwide. However, there is no effective pharmacologic therapy. Here, we show that AGGF1 effectively blocks TAA-associated arterial inflammation and remodeling in three different mouse models (mice with transverse aortic constriction, Fbn1C1041G/+ mice, and ß-aminopropionitrile-treated mice). AGGF1 expression is reduced in the ascending aortas from the three models and human TAA patients. Aggf1+/- mice and vascular smooth muscle cell (VSMC)-specific Aggf1smcKO knockout mice show aggravated TAA phenotypes. Mechanistically, AGGF1 enhances the interaction between its receptor integrin α7 and latency-associated peptide (LAP)-TGF-ß1, blocks the cleavage of LAP-TGF-ß1 to form mature TGF-ß1, and inhibits Smad2/3 and ERK1/2 phosphorylation in VSMCs. Pirfenidone, a treatment agent for idiopathic pulmonary fibrosis, inhibits TAA-associated vascular inflammation and remodeling in wild type mice, but not in Aggf1+/- mice. In conclusion, we identify an innovative AGGF1 protein therapeutic strategy to block TAA-associated vascular inflammation and remodeling, and show that efficacy of TGF-ß inhibition therapies require AGGF1.


Asunto(s)
Aneurisma de la Aorta Torácica , Factor de Crecimiento Transformador beta1 , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Sistema de Señalización de MAP Quinasas , Aneurisma de la Aorta Torácica/genética , Ratones Noqueados , Inflamación/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Angiogénicas/genética
5.
Obesity (Silver Spring) ; 31(1): 123-138, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504350

RESUMEN

OBJECTIVE: Genetic variants in ninjurin-2 (NINJ2; nerve injury-induced protein 2) confer risk of ischemic strokes and coronary artery disease as well as endothelial activation and inflammation. However, little is known about NINJ2's in vivo functions and underlying mechanisms. METHODS: The phenotypes of NINJ2 knockout mice were analyzed, and mechanisms of NINJ2 that regulate body weight, insulin resistance, and glucose homeostasis and lipogenesis were investigated in vivo and in vitro. RESULTS: This study found that mice lacking NINJ2 showed impaired adipogenesis, increased insulin resistance, and abnormal glucose homeostasis, all of which are risk factors for strokes and coronary artery disease. Mechanistically, NINJ2 directly interacts with insulin receptor/insulin-like growth factor 1 receptor (INSR/IGF1R), and NINJ2 knockdown can block insulin-induced mitotic clonal expansion during preadipocyte differentiation by inhibiting protein kinase B/extracellular signal-regulated kinase (AKT/ERK) signaling and by decreasing the expression of key adipocyte transcriptional regulators CCAAT/enhancer-binding protein ß (C/EBP-ß), C/EBP-α, and peroxisome proliferator-activated receptor γ (PPAR-γ). Furthermore, the interaction between NINJ2 and INSR/IGF1R is needed for maintaining insulin sensitivity in adipocytes and muscle via AKT and glucose transporter type 4. Notably, adenovirus-mediated NINJ2 overexpression can ameliorate diet-induced insulin resistance in mice. CONCLUSIONS: In conclusion, these findings reveal NINJ2 as an important new facilitator of insulin receptors, and the authors propose a unique regulatory mechanism between insulin signaling, adipogenesis, and insulin resistance.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Resistencia a la Insulina , Animales , Ratones , Células 3T3-L1 , Adipogénesis/genética , Diferenciación Celular/genética , Enfermedad de la Arteria Coronaria , Glucosa/metabolismo , Insulina , Resistencia a la Insulina/genética , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Moléculas de Adhesión Celular Neuronal/genética
6.
Metabolism ; 140: 155380, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549436

RESUMEN

BACKGROUND: Liver fibrogenesis is orchestrated by the paracrine signaling interaction between several resident cell types regulating the activation of hepatic stellate cells (HSCs). However, the molecular mechanisms underlying paracrine regulation are largely unknown. The aim of this study is to elucidate the role of Ninjurin2 in the crosstalk between hepatocytes and HSCs and better understand the implications of Ninjurin2 in liver fibrosis. METHODS: Ninj2 knockout mice (Ninj2-/-) and hepatocyte-specific Ninj2 overexpression mice (Ninj2Hep-tg) were constructed and followed by the induction of liver fibrosis using methionine- and choline-deficient (MCD) diet. The relationship between Ninjurin2 and liver fibrosis phenotype was evaluated in vivo by measurement of fibrotic markers and related genes. We used an in vitro transwell cell co-culture model to examine the impact of Ninjurin2 in hepatocytes on the crosstalk to HSCs. The interaction of Ninjurin2 and IGF1R and the regulation of PI3K-AKT-EGR1 were analyzed in vivo and in vitro. Finally, an inhibitory Ninjurin2 peptide was injected intravenously via the tail vein to investigate whether inhibiting of Ninjurin2 cascade can attenuate MCD diet-induced liver fibrosis in mice. RESULTS: We found that hepatic Ninjurin2 expression was significantly increased in fibrotic human liver and MCD diet-induced liver injury mouse models. In the mouse model, hepatocyte-specific overexpression of Ninj2 exacerbates MCD-induced liver fibrosis, while global Ninj2 knockout reverses the phenotype. To mimic hepatocyte-HSC crosstalk during liver fibrosis, we used co-culture systems containing hepatocytes and HSCs and determined that Ninjurin2 overexpression in hepatocytes directly activates HSCs in vitro. Mechanistically, Ninjurin2 directly interacts with insulin-like growth factor 1 receptor (IGF1R) and increases the hepatocyte secretion of the fibrogenic cytokine, platelet-derived growth factor-BB (PDGF-BB) through IGF1R-PI3K-AKT-EGR1 cascade. Inhibition of PDGFRB signaling in HSCs can abolish the profibrogenic effect of Ninjurin2. In addition, we demonstrated that a specific inhibitory Ninjurin2 peptide containing an N-terminal adhesion motif mitigates liver fibrosis and improves hepatic function in the mouse models by negatively regulating the sensitivity of IGF1R to IGF1 in hepatocytes. CONCLUSION: Hepatic Ninjurin2 plays a key role in liver fibrosis through paracrine regulation of PDGF-BB/PDGFRB signaling in HSCs, and the results suggesting Ninjurin2 may be a potential therapeutic target.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Células Estrelladas Hepáticas , Hígado , Transducción de Señal , Animales , Humanos , Ratones , Becaplermina/metabolismo , Becaplermina/farmacología , Becaplermina/uso terapéutico , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/farmacología , Moléculas de Adhesión Celular Neuronal/uso terapéutico , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Fibrosis
7.
Cardiovasc Res ; 118(1): 196-211, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33483741

RESUMEN

AIMS: The aim of this study was to identify the molecular mechanism for hyperglycaemia-induced metabolic memory in endothelial cells (ECs), and to show its critical importance to development of cardiovascular dysfunction in diabetes. METHODS AND RESULTS: Hyperglycaemia induces increased nuclear factor-κB (NF-κB) signalling, up-regulation of miR-27a-3p, down-regulation of nuclear factor erythroid-2 related factor 2 (NRF2) expression, increased transforming growth factor-ß (TGF-ß) signalling, down-regulation of miR-29, and induction of endothelial-to-mesenchymal transition (EndMT), all of which are memorized by ECs and not erased when switched to a low glucose condition, thereby causing perivascular fibrosis and cardiac dysfunction. Similar metabolic memory effects are found for production of nitric oxide (NO), generation of reactive oxygen species (ROS), and the mitochondrial oxygen consumption rate in two different types of ECs. The observed metabolic memory effects in ECs are blocked by NRF2 activator tert-butylhydroquinone and a miR-27a-3p inhibitor. In vivo, the NRF2 activator and miR-27a-3p inhibitor block cardiac perivascular fibrosis and restore cardiovascular function by decreasing NF-κB signalling, down-regulating miR-27a-3p, up-regulating NRF2 expression, reducing TGF-ß signalling, and inhibiting EndMT during insulin treatment of diabetes in streptozotocin-induced diabetic mice, whereas insulin alone does not improve cardiac function. CONCLUSIONS: Our data indicate that disruption of hyperglycaemia-induced EC metabolic memory is required for restoring cardiac function during treatment of diabetes, and identify a novel molecular signalling pathway of NF-κB/miR-27a-3p/NRF2/ROS/TGF-ß/EndMT involved in metabolic memory.


Asunto(s)
Glucemia/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Metabolismo Energético , Transición Epitelial-Mesenquimal , Animales , Células Cultivadas , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Metabolismo Energético/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis , Humanos , Hidroquinonas/farmacología , Masculino , Ratones Endogámicos BALB C , MicroARNs/genética , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
8.
Front Psychol ; 12: 602023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613386

RESUMEN

Although the concept of the consumer-brand relationship has undergone rapid change over the past two decades, the issue of brand addiction is still generally neglected in the literature. Based on social identity theory, the research develops a conceptual model of the influence of self-expressive brands (SEBs) and susceptibility to interpersonal influence (SUSCEP) on brand addiction. The results of this research demonstrate both separate and joint effects of SEBs and SUSCEP on brand addiction. In addition, harmonious brand passion and obsessive brand passion positively mediate the relationships among SEB, SUSCEP, and brand addiction. The research explores the formation mechanism of brand addiction from a new perspective and has important practical implications for brand marketers concerned with finding the most effective means to enhance the consumer-brand relationship.

9.
Sci Rep ; 6: 34034, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698442

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignant cancers. To elucidate new regulatory mechanisms for heptocarcinogenesis, we investigated the regulation of p21, a cyclin-dependent kinase (CDK) inhibitor encoded by CDKN1A, in HCC. The expression level of p21 is decreased with the progression of HCC. Luciferase assays with a luciferase-p21-3' UTR reporter and its serial deletions identified a 15-bp repressor element at the 3'-UTR of CDKN1A, which contains a binding site for miR-95-3p. Mutation of the binding site eliminated the regulatory effect of miR-95-3p on p21 expression. Posttranscriptional regulation of p21 expression by miR-95-3p is mainly on the protein level (suppression of translation). Overexpression of miR-95-3p in two different HCC cell lines, HepG2 and SMMC7721, significantly promoted cell proliferation, cell cycle progression and cell migration, whereas a miR-95-3p specific inhibitor decreased cell proliferation, cell cycle progression and cell migration. The effects of miR-95-3p on cellular functions were rescued by overexpression of p21. Overexpression of miR-95-3p promoted cell proliferation and tumor growth in HCC xenograft mouse models. Expression of miR-95-3p was significantly higher in HCC samples than in adjacent non-cancerous samples. These results demonstrate that miR-95-3p is a potential new marker for HCC and regulates hepatocarcinogenesis by directly targeting CDKN1A/p21 expression.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Movimiento Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células Hep G2 , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , MicroARNs/genética , Trasplante de Neoplasias , ARN Neoplásico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA