Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 695-706, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150351

RESUMEN

Ethylene methoxycarbonylation (EMC) to methyl propanoate (MP) is an industrially important reaction and commercially uses a homogeneous Pd-phosphine organometallic complex as the catalyst and corrosive strong acid as the promoter. In this work, we develop a Pt1/MoS2 heterogeneous single-atom catalyst (SAC) which exhibits high activity, selectivity, and good recyclability for EMC reaction without need of any liquid acid. The production rate of MP achieves 0.35 gMP gcat-1 h-1 with MP selectivity of 91.1% at 1 MPa CO, 1 MPa C2H4, and 160 °C, which can be doubled at 2 MPa CO and corresponds to 320.1 molMP molPt-1 h-1, at least 1 order of magnitude higher than the earlier reported heterogeneous catalyst and even comparable to some of homogeneous catalyst. Advanced characterizations and DFT calculations reveal that all the Pt single atoms are located at the Mo vacancies along the Mo edge of the MoS2 nanosheets, forming pocket-like Mo-S-Pt1-S-Mo ensembles with uniform and well-defined structure. Methanol is first adsorbed and dissociated on Mo sites, and the produced H spillovers to the adjacent Pt site forming Pt-H species which then activate ethylene, forming Pt-ethyl species. Meanwhile, CO adsorbed on the other Mo site reacts with the Pt-ethyl species, yielding propionyl species, and this carbonylation is the rate-determining step. The final methoxylation step proceeds via the nucleophilic attack of propionyl species by -OCH3 affording the final product MP. Such a metal-support concerted catalysis enabled by the Mo-S-Pt1-S-Mo multisite ensemble opens a new avenue for SACs to promote the multimolecular reactions that prevail in homogeneous catalysis.

2.
J Am Chem Soc ; 146(17): 11955-11967, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640231

RESUMEN

Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.

3.
Angew Chem Int Ed Engl ; : e202411543, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115459

RESUMEN

Dual-atom catalysts (DACs) are promising for applications in electrochemical CO2 reduction due to the enhanced flexibility of the catalytic sites and the synergistic effect between dual atoms. However, precisely controlling the atomic distance and identifying the dual-atom configuration of DACs to optimize the catalytic performance remains a challenge. Here, the Ni and Fe atomic pairs were constructed on nitrogen-doped carbon support in three different configurations: NiFe-isolate, NiFe-N bridge, and NiFe bonding. It was found that the NiFe-N bridge catalyst with NiN4 and FeN4 sharing two N atoms exhibited superior CO2 reduction activity and promising stability when compared to the NiFe-isolate and NiFe-bonding catalysts. A series of characterizations and density functional theory calculations suggested that the N-bridged NiFe sites with an appropriate distance between Ni and Fe atoms can exert a more pronounced synergy. It not only regulated the suitable adsorption strength for the *COOH intermediate but also promoted the desorption of *CO, thus accelerating the CO2 electroreduction to CO. This work provides an important implication for the enhancement of catalysis by the tailoring of the coordination structure of DACs, with the identification of distance effect between neighboring dual atoms.

4.
Angew Chem Int Ed Engl ; 63(12): e202318461, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38302835

RESUMEN

Photocatalytic selective oxidation under visible light presents a promising approach for the sustainable transformation of biomass-derived wastes. However, achieving both high conversion and excellent selectivity poses a significant challenge. In this study, two valuable trioses, glyceraldehyde and dihydroxyacetone, are produced from glycerol over Cuδ+ -decorated WO3 photocatalyst in the presence of H2 O2 . The photocatalyst exhibits a remarkable five-fold increase in the conversion rate (3.81 mmol ⋅ g-1 ⋅ h-1 ) while maintaining a high selectivity towards two trioses (46.4 % to glyceraldehyde and 32.9 % to dihydroxyacetone). Through a comprehensive analysis involving X-ray photoelectron spectroscopy measurements with and without light irradiation, electron spin resonance spectroscopy, and isotopic analysis, the critical role of Cu+ species has been explored as efficient hole acceptors. These species facilitate charge transfer, promoting glycerol oxidation by photoholes, followed by coupling with OH- , which are subsequently dehydrated to yield the desired glyceraldehyde and dihydroxyacetone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA