Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572656

RESUMEN

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Asunto(s)
Arginasa , Gripe Humana , Animales , Humanos , Ratones , Arginasa/genética , Arginasa/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmón/metabolismo , Mamíferos
2.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949522

RESUMEN

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Asunto(s)
Carboxiliasas , Lupus Eritematoso Sistémico , Macrófagos , Ratones Noqueados , Succinatos , Animales , Lupus Eritematoso Sistémico/inmunología , Ratones , Humanos , Femenino , Macrófagos/inmunología , Succinatos/farmacología , Enfermedades Cardiovasculares/inmunología , Biomarcadores , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Adulto , Masculino , Modelos Animales de Enfermedad , Persona de Mediana Edad , Citocinas/metabolismo , Receptor Toll-Like 7/metabolismo , Hidroliasas
3.
Mol Cell ; 69(4): 689-698.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429925

RESUMEN

Endothelial-to-mesenchymal transition (EndoMT) is a cellular process often initiated by the transforming growth factor ß (TGF-ß) family of ligands. Although required for normal heart valve development, deregulated EndoMT is linked to a wide range of pathological conditions. Here, we demonstrate that endothelial fatty acid oxidation (FAO) is a critical in vitro and in vivo regulator of EndoMT. We further show that this FAO-dependent metabolic regulation of EndoMT occurs through alterations in intracellular acetyl-CoA levels. Disruption of FAO via conditional deletion of endothelial carnitine palmitoyltransferase II (Cpt2E-KO) augments the magnitude of embryonic EndoMT, resulting in thickening of cardiac valves. Consistent with the known pathological effects of EndoMT, adult Cpt2E-KO mice demonstrate increased permeability in multiple vascular beds. Taken together, these results demonstrate that endothelial FAO is required to maintain endothelial cell fate and that therapeutic manipulation of endothelial metabolism could provide the basis for treating a growing number of EndoMT-linked pathological conditions.


Asunto(s)
Carnitina O-Palmitoiltransferasa/fisiología , Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal , Ácidos Grasos/química , 3-Hidroxiacil-CoA Deshidrogenasas , Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferasa , Animales , Isomerasas de Doble Vínculo Carbono-Carbono , Células Cultivadas , Endotelio Vascular/citología , Enoil-CoA Hidratasa , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Racemasas y Epimerasas , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
4.
J Allergy Clin Immunol ; 153(4): 1010-1024.e14, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092139

RESUMEN

RATIONALE: Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE: We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS: SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS: An SAA level greater than or equal to 108.8 µg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1ß, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS: SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.


Asunto(s)
Asma , Lipoproteínas HDL , Humanos , Animales , Ratones , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Inflamación/metabolismo , Obesidad , Alérgenos
5.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L503-L519, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39159362

RESUMEN

In hypoxic and pseudohypoxic rodent models of pulmonary hypertension (PH), hypoxia-inducible factor (HIF) inhibition attenuates disease initiation. However, HIF activation alone, due to genetic alterations or use of inhibitors of prolyl hydroxylase domain (PHD) enzymes, has not been definitively shown to cause PH in humans, indicating the involvement of other mechanisms. Given the association between endothelial cell dysfunction and PH, the effects of pseudohypoxia and its underlying pathways were investigated in primary human lung endothelial cells. PHD2 silencing or inhibition, while activating HIF2α, induced apoptosis-resistance and IFN/STAT activation in endothelial cells, independent of HIF signaling. Mechanistically, PHD2 deficiency activated AKT and ERK, inhibited JNK, and reduced AIP1 (ASK1-interacting protein 1), all independent of HIF2α. Like PHD2, AIP1 silencing affected these same kinase pathways and produced a similar dysfunctional endothelial cell phenotype, which was partially reversed by AKT inhibition. Consistent with these in vitro findings, AIP1 protein levels in lung endothelial cells were decreased in Tie2-Cre/Phd2 knockout mice compared with wild-type controls. Lung vascular endothelial cells from patients with pulmonary arterial hypertension (PAH) showed IFN/STAT activation. Lung tissue from both SU5416/hypoxia PAH rats and patients with PAH all showed AKT activation and dysregulated AIP1 expression. In conclusion, PHD2 deficiency in lung vascular endothelial cells drives an apoptosis-resistant and inflammatory phenotype, mediated by AKT activation and AIP1 loss independent of HIF signaling. Targeting these pathways, including PHD2, AKT, and AIP1, holds the potential for developing new treatments for endothelial dysfunction in PH.NEW & NOTEWORTHY HIF activation alone does not conclusively lead to human PH, suggesting that HIF-independent signaling may also contribute to hypoxia-induced PH. This study demonstrated that PHD2 silencing-induced pseudohypoxia in human lung endothelial cells suppresses apoptosis and activates STAT, effects that persist despite HIF2α inhibition or knockdown and are attributed to AKT and ERK activation, JNK inhibition, and AIP1 loss. These findings align with observations in lung endothelial cells and tissues from PAH rodent models and patients.


Asunto(s)
Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Endoteliales , Hipertensión Pulmonar , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Inflamación/metabolismo , Inflamación/patología , Ratones , Transducción de Señal , Pulmón/metabolismo , Pulmón/patología , Ratones Noqueados , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836561

RESUMEN

Interferonopathies, interferon (IFN)-α/ß therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1-/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.


Asunto(s)
Caveolina 1/genética , Endotelio Vascular/metabolismo , Hipertensión Pulmonar/metabolismo , Interferón Tipo I/metabolismo , Animales , Células Cultivadas , Endotelio Vascular/enzimología , Endotelio Vascular/fisiopatología , Silenciador del Gen , Humanos , Hipertensión Pulmonar/fisiopatología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34934004

RESUMEN

Signal tranducer and activator of transcription 5 (STAT5) plays a critical role in mediating cellular responses following cytokine stimulation. STAT proteins critically signal via the formation of dimers, but additionally, STAT tetramers serve key biological roles, and we previously reported their importance in T and natural killer (NK) cell biology. However, the role of STAT5 tetramerization in autoimmune-mediated neuroinflammation has not been investigated. Using the STAT5 tetramer-deficient Stat5a-Stat5b N-domain double knockin (DKI) mouse strain, we report here that STAT5 tetramers promote the pathogenesis of experimental autoimmune encephalomyelitis (EAE). The mild EAE phenotype observed in DKI mice correlates with the impaired extravasation of pathogenic T-helper 17 (Th17) cells and interactions between Th17 cells and monocyte-derived cells (MDCs) in the meninges. We further demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated STAT5 tetramerization regulates the production of CCL17 by MDCs. Importantly, CCL17 can partially restore the pathogenicity of DKI Th17 cells, and this is dependent on the activity of the integrin VLA-4. Thus, our study reveals a GM-CSF-STAT5 tetramer-CCL17 pathway in MDCs that promotes autoimmune neuroinflammation.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Factor de Transcripción STAT5 , Animales , Quimiocina CCL17/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos/metabolismo , Ratones , Multimerización de Proteína , Factor de Transcripción STAT5/química , Factor de Transcripción STAT5/metabolismo , Células Th17/metabolismo
8.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791441

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Células Endoteliales , PPAR gamma , Proteínas Proto-Oncogénicas c-akt , Arteria Pulmonar , Receptor Notch1 , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , PPAR gamma/metabolismo , PPAR gamma/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Células Endoteliales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Masculino , Proliferación Celular , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Femenino , Células Cultivadas
9.
Proc Natl Acad Sci U S A ; 117(10): 5409-5419, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094169

RESUMEN

Type III IFN lambdas (IFN-λ) have recently been described as important mediators of immune responses at barrier surfaces. However, their role in autoimmune diseases such as systemic lupus erythematosus (SLE), a condition characterized by aberrant type I IFN signaling, has not been determined. Here, we identify a nonredundant role for IFN-λ in immune dysregulation and tissue inflammation in a model of TLR7-induced lupus. IFN-λ protein is increased in murine lupus and IFN-λ receptor (Ifnlr1) deficiency significantly reduces immune cell activation and associated organ damage in the skin and kidneys without effects on autoantibody production. Single-cell RNA sequencing in mouse spleen and human peripheral blood revealed that only mouse neutrophils and human B cells are directly responsive to this cytokine. Rather, IFN-λ activates keratinocytes and mesangial cells to produce chemokines that induce immune cell recruitment and promote tissue inflammation. These data provide insights into the immunobiology of SLE and identify type III IFNs as important factors for tissue-specific pathology in this disease.


Asunto(s)
Interferones/fisiología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Animales , Linfocitos B/inmunología , Línea Celular , Eliminación de Gen , Humanos , Imiquimod/farmacología , Inflamación/inmunología , Inflamación/patología , Inductores de Interferón/farmacología , Interferón Tipo I/fisiología , Interferones/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Queratinocitos/patología , Células Mesangiales/efectos de los fármacos , Células Mesangiales/inmunología , Células Mesangiales/patología , Ratones Endogámicos C57BL , Ratones Mutantes , Receptores de Interferón/genética , Transducción de Señal , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/fisiología , Interferón lambda
10.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L315-L332, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35043674

RESUMEN

Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Indoles , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Pirroles , Ratas , Disfunción Ventricular Derecha/tratamiento farmacológico
11.
Immunity ; 38(3): 514-27, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23453633

RESUMEN

Interleukin-21 (IL-21) has broad actions on T and B cells, but its actions in innate immunity are poorly understood. Here we show that IL-21 induced apoptosis of conventional dendritic cells (cDCs) via STAT3 and Bim, and this was inhibited by granulocyte-macrophage colony-stimulating factor (GM-CSF). ChIP-Seq analysis revealed genome-wide binding competition between GM-CSF-induced STAT5 and IL-21-induced STAT3. Expression of IL-21 in vivo decreased cDC numbers, and this was prevented by GM-CSF. Moreover, repetitive α-galactosylceramide injection of mice induced IL-21 but decreased GM-CSF production by natural killer T (NKT) cells, correlating with decreased cDC numbers. Furthermore, adoptive transfer of wild-type CD4+ T cells caused more severe colitis with increased DCs and interferon-γ (IFN-γ)-producing CD4+ T cells in Il21r(-/-)Rag2(-/-) mice (which lack T cells and have IL-21-unresponsive DCs) than in Rag2(-/-) mice. Thus, IL-21 and GM-CSF exhibit cross-regulatory actions on gene regulation and apoptosis, regulating cDC numbers and thereby the magnitude of the immune response.


Asunto(s)
Apoptosis/inmunología , Células Dendríticas/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interleucinas/inmunología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Western Blotting , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , ADN Intergénico/genética , ADN Intergénico/inmunología , ADN Intergénico/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Citometría de Flujo , Galactosilceramidas/inmunología , Galactosilceramidas/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucinas/genética , Interleucinas/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Interleucina-21/deficiencia , Receptores de Interleucina-21/genética , Receptores de Interleucina-21/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología
12.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955518

RESUMEN

Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.


Asunto(s)
Aterosclerosis , Ácidos Grasos Omega-3 , Animales , Colesterol/metabolismo , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico , Ratones , Ratones Noqueados , Ácido Oléico , Receptores de LDL/genética , Aceite de Soja
13.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743192

RESUMEN

Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFß-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.


Asunto(s)
Tejido Elástico , Proteína-Lisina 6-Oxidasa , Animales , Aorta/metabolismo , Presión Sanguínea , Cobre , Dilatación Patológica/patología , Tejido Elástico/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 320(1): H36-H51, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064559

RESUMEN

Bacillus anthracis edema toxin (ET) inhibited lethal toxin-stimulated pulmonary artery pressure (Ppa) and increased lung cAMP levels in our previous study. We therefore examined whether ET inhibits hypoxic pulmonary vasoconstriction (HPV). Following baseline hypoxic measures in isolated perfused lungs from healthy rats, compared with diluent, ET perfusion reduced maximal Ppa increases (mean ± SE percentage of maximal Ppa increase with baseline hypoxia) during 6-min hypoxic periods (FIO2 = 0%) at 120 min (16 ± 6% vs. 51 ± 6%, P = 0.004) and 180 min (11.4% vs. 55 ± 6%, P = 0.01). Protective antigen-mAb (PA-mAb) and adefovir inhibit host cell edema factor uptake and cAMP production, respectively. In lungs perfused with ET following baseline measures, compared with placebo, PA-mAb treatment increased Ppa during hypoxia at 120 and 180 min (56 ± 6% vs. 10 ± 4% and 72 ± 12% vs. 12 ± 3%, respectively, P ≤ 0.01) as did adefovir (84 ± 10% vs. 16.8% and 123 ± 21% vs. 26 ± 11%, respectively, P ≤ 0.01). Compared with diluent, lung perfusion with ET for 180 min reduced the slope of the relationships between Ppa and increasing concentrations of endothelin-1 (ET-1) (21.12 ± 2.96 vs. 3.00 ± 0.76 × 108 cmH2O/M, P < 0.0001) and U46619, a thromboxane A2 analogue (7.15 ± 1.01 vs. 3.74 ± 0.31 × 107 cmH2O/M, P = 0.05) added to perfusate. In lungs isolated from rats after 15 h of in vivo infusions with either diluent, ET alone, or ET with PA-mAb, compared with diluent, the maximal Ppa during hypoxia and the slope of the relationship between change in Ppa and ET-1 concentration added to the perfusate were reduced in lungs from animals challenged with ET alone (P ≤ 0.004) but not with ET and PA-mAb together (P ≥ 0.73). Inhibition of HPV by ET could aggravate hypoxia during anthrax pulmonary infection.NEW & NOTEWORTHY The most important findings here are edema toxin's potent adenyl cyclase activity can interfere with hypoxic pulmonary vasoconstriction, an action that could worsen hypoxemia during invasive anthrax infection with lung involvement. These findings, coupled with other studies showing that lethal toxin can disrupt pulmonary vascular integrity, indicate that both toxins can contribute to pulmonary pathophysiology during infection. In combination, these investigations provide a further basis for the use of antitoxin therapies in patients with worsening invasive anthrax disease.


Asunto(s)
Antígenos Bacterianos/toxicidad , Presión Arterial/efectos de los fármacos , Toxinas Bacterianas/toxicidad , AMP Cíclico/metabolismo , Hipoxia/fisiopatología , Pulmón/irrigación sanguínea , Arteria Pulmonar/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Inhibidores de Adenilato Ciclasa/farmacología , Adenilil Ciclasas/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Masculino , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Sistemas de Mensajero Secundario , Regulación hacia Arriba , Vasoconstrictores/farmacología
15.
Genet Med ; 23(10): 1864-1872, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34050321

RESUMEN

PURPOSE: Creatine transporter deficiency (CTD) is a rare X-linked disorder of creatine transport caused by pathogenic variants in SLC6A8 (Xq28). CTD features include developmental delay, seizures, and autism spectrum disorder. This study was designed to investigate CTD cardiac phenotype and sudden death risk. METHODS: We performed a cross-sectional analysis of CTD males between 2017 and 2020. Subjects underwent evaluation with electrocardiogram (ECG), echocardiography, and ambulatory ECG with comparable analysis in creatine transporter deficient mice (Slc6a8-/y) using ECG, echocardiography, exercise testing, and indirect calorimetry. RESULTS: Eighteen subjects with CTD (18 males, age 7.4 [3.8] years) were evaluated: seven subjects (39%) had QTc ≥ 470 milliseconds: 510.3 ± 29.0 vs. 448.3 ± 15.9, P < 0.0001. The QTc ≥ 470 milliseconds cohort had increased left ventricular internal dimension (diastole) ([LVIDd] Z-score: 0.22 ± 0.74, n = 7 vs. -0.93 ± 1.0, n = 11, P = 0.0059), and diminished left ventricular posterior wall dimension (diastole) ([LVPWDd, in mm]: 5.0 ± 0.6, n = 7 vs. 5.7 ± 0.8, n = 11, P = 0.0183), when compared to subjects with normal or borderline QTc prolongation. Similar ECG and echocardiographic abnormalities were seen in Slc6a8-/y mice. Additionally, Slc6a8-/y mice had diminished survival (65%). CONCLUSION: Prolonged QTc and abnormal echocardiographic parameters consistent with developing cardiomyopathy are seen in some male subjects with CTD. Slc6a8-/y mice recapitulated these cardiac abnormalities. Male CTD subjects may be at increased risk for cardiac dysfunction and sudden death.


Asunto(s)
Trastorno del Espectro Autista , Creatina , Animales , Encefalopatías Metabólicas Innatas , Creatina/deficiencia , Estudios Transversales , Muerte Súbita , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X , Ratones , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia
16.
J Microsc ; 283(1): 9-20, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33482682

RESUMEN

In pathology protocols, a tissue block, such as one containing a mouse brain or a biopsy sample from a patient, can produce several hundred thin sections. Substantial time may be required to analyse all sections. In cases of uncertainty regarding which sections to focus on, noninvasive scout imaging of intact blocks can help in guiding the pathology procedure. The scouting step is ideally done in a time window of minutes without special sample preparation that may interfere with the pathology procedures. The challenge is to obtain some visibility of unstained tissue structures at sub-10 µm resolution. We explored a novel x-ray tomosynthesis method as a way to maximise contrast-to-noise ratio, a determinant of tissue visibility. It provided a z-stack of thousands of images at 7.3 µm resolution (10% contrast, half-period of 68.5 line pairs/mm), in scans of 5-15 minutes. When compared with micro-CT scans, the straight-line tomosynthesis scan did not need to rotate the sample, which allowed flat samples, such as paraffin blocks, to be kept as close as possible to the x-ray source. Thus, given the same hardware, scan time and resolution, this mode maximised the photon flux density through the sample, which helped in maximising the contrast-to-noise ratio. The tradeoff of tomosynthesis is incomplete 3D information. The microtomosynthesis scanner has scanned 110 unstained human and animal tissue samples as part of their respective pathology protocols. In all cases, the z-stack of images showed tissue structures that guided sectioning or provided correlative structural information. We describe six examples that presented different levels of visibility of soft tissue structures. Additionally, in a set of coronary artery samples from an HIV patient donor, microtomosynthesis made a new discovery of isolated focal calcification in the internal elastic lamina of coronary wall, which was the onset of medial calcific sclerosis in the arteries.


A microscopy version of the imaging method for 3D luggage screening has been adapted to image unstained pathology samples. Pathology tests of tissue samples are used for clinical diagnosis and for biomedical research. The tissue samples are often embedded in paraffin blocks and sectioned into many thin slices, which are then stained with the appropriate agents for light microscopy. Since each tissue block can produce several hundred thin sections, much time and labour is required to analyse all sections. Noninvasive scout imaging of intact blocks can help in guiding the pathology procedure. The scouting step is ideally done in a time window of minutes without special sample preparation that may interfere with the pathology procedures. The challenge is to obtain some visibility of unstained tissue structures at sufficient resolution. X-ray imaging is a promising tool to meet the challenge since x-rays can penetrate thick samples that are opaque to visible light. With x-ray imaging, a determinant of tissue visibility is the flux density of photons that illuminate the sample. We explored a novel x-ray tomosynthesis method as a way to maximise this factor. It provided a stack of thousands of cross-sectional images at 7.3 µm resolution (half-period of 68.5 line pairs/mm) in scans of 5-15 minutes. When compared with micro-CT scans (a widely used laboratory technology), this method did not need to rotate the sample, which allowed flat samples such as paraffin blocks to be kept as close as possible to the x-ray source. Thus, given the same hardware, scan time and resolution, this method maximised the photon flux density through the sample, which helped in improving the visibility of unstained tissue under x-ray. The tradeoff of the method is incomplete 3D information. Over 100 unstained human and animal tissue samples have been scanned with this method as part of their respective pathology protocols. In all cases, the stack of cross-sectional images showed tissue structures that guided pathology analysis or provided correlative structural information. We describe six examples that presented different levels of tissue visibility. Additionally, in a set of coronary artery samples from an HIV patient donor, microtomosynthesis made a new discovery of isolated focal calcification in the internal elastic lamina of coronary wall, which was the onset of medial calcific sclerosis in the arteries.


Asunto(s)
Infecciones por VIH , Imagenología Tridimensional , Animales , Humanos , Ratones , Radiografía , Calcificación Vascular , Microtomografía por Rayos X , Rayos X
17.
Nature ; 523(7562): 617-20, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26223627

RESUMEN

Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion; however, genetic evidence suggests that facilitated diffusion is not critical for normal function. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.


Asunto(s)
Metabolismo Energético , Mitocondrias Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Difusión , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Fuerza Protón-Motriz
18.
Hum Mol Genet ; 27(9): 1533-1544, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29452352

RESUMEN

Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.


Asunto(s)
Calsecuestrina/metabolismo , Taquicardia Ventricular/metabolismo , Tamoxifeno/farmacología , Animales , Calcio/metabolismo , Calsecuestrina/genética , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Inmunohistoquímica , Masculino , Ratones , Ratones Mutantes , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Taquicardia Ventricular/genética
19.
J Neuroinflammation ; 17(1): 140, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32359360

RESUMEN

BACKGROUND: Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success. METHODS: The novel PET tracer [11C]MC1 was used to examine COX-2 expression [1] in the brains of four rhesus macaques at baseline and after injection of the inflammogen lipopolysaccharide (LPS) into the right putamen, and [2] in the joints of two human participants with rheumatoid arthritis and two healthy individuals. In the primate study, two monkeys had one LPS injection, and two monkeys had a second injection 33 and 44 days, respectively, after the first LPS injection. As a comparator, COX-1 expression was measured using [11C]PS13. RESULTS: COX-2 binding, expressed as the ratio of specific to nondisplaceable uptake (BPND) of [11C]MC1, increased on day 1 post-LPS injection; no such increase in COX-1 expression, measured using [11C]PS13, was observed. The day after the second LPS injection, a brain lesion (~ 0.5 cm in diameter) with high COX-2 density and high BPND (1.8) was observed. Postmortem brain analysis at the gene transcript or protein level confirmed in vivo PET results. An incidental finding in an unrelated monkey found a line of COX-2 positivity along an incision in skull muscle, demonstrating that [11C]MC1 can localize inflammation peripheral to the brain. In patients with rheumatoid arthritis, [11C]MC1 successfully imaged upregulated COX-2 in the arthritic hand and shoulder and apparently in the brain. Uptake was blocked by celecoxib, a COX-2 preferential inhibitor. CONCLUSIONS: Taken together, these results indicate that [11C]MC1 can image and quantify COX-2 upregulation in both monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation. TRIAL REGISTRATION: ClinicalTrials.gov NCT03912428. Registered April 11, 2019.


Asunto(s)
Ciclooxigenasa 2/análisis , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirimidinas , Radiofármacos , Adulto , Animales , Artritis Reumatoide/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Macaca mulatta , Persona de Mediana Edad
20.
Proc Natl Acad Sci U S A ; 114(34): E7131-E7139, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28778995

RESUMEN

EGR1 is an early growth response zinc finger transcription factor with broad actions, including in differentiation, mitogenesis, tumor suppression, and neuronal plasticity. Here we demonstrate that Egr1-/- mice on the C57BL/6 background have normal eyelid development, but back-crossing to BALB/c background for four or five generations resulted in defective eyelid development by day E15.5, at which time EGR1 was expressed in eyelids of WT mice. Defective eyelid formation correlated with profound ocular anomalies evident by postnatal days 1-4, including severe cryptophthalmos, microphthalmia or anophthalmia, retinal dysplasia, keratitis, corneal neovascularization, cataracts, and calcification. The BALB/c albino phenotype-associated Tyrc tyrosinase mutation appeared to contribute to the phenotype, because crossing the independent Tyrc-2J allele to Egr1-/- C57BL/6 mice also produced ocular abnormalities, albeit less severe than those in Egr1-/- BALB/c mice. Thus EGR1, in a genetic background-dependent manner, plays a critical role in mammalian eyelid development and closure, with subsequent impact on ocular integrity.


Asunto(s)
Párpados/crecimiento & desarrollo , Ratones/genética , Ratones/metabolismo , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Párpados/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones/crecimiento & desarrollo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA