Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Regen Med ; 18(4): 313-327, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36950900

RESUMEN

Aim: To investigate the effect of hDPSC-Exos in flap I/R injury, a condition in which tissue damage increases after blood flow is restored to the flap after ischemia. Materials & methods: HUVECs were used to investigate the influences and mechanisms of hDPSC-Exos on cell proliferation and migration. A rat model was established to verify the role of hDPSC-Exos in flap I/R injuries in vivo. Results: hDPSC-Exos promoted the proliferation, migration and tube formation of HUVECs in a dose-dependent way by activating PI3K/AKT signaling pathway, and improved the survival and microvessel density of the flap and suppressed epithelial cell apoptosis. Conclusion: hDPSC-Exos can enhance flap repair after I/R injury. This process may be mediated by the activation of PI3K/AKT signaling pathway.


Skin flap transplantation is one of the most important methods of repairing refractory wounds and organ reconstruction. I/R injury and insufficiency of neovascularization significantly affect the survival of flaps. Human dental pulp stem cells (hDPSCs) are a type of mesenchymal stem cells (MSCs) present in dental pulp tissue that have attracted increasing attention. They can play a repair role in a variety of ischemic injuries and neovascularization. Exosomes are important paracrine mediators between MSCs and target cells, containing a variety of proteins, mRNA and miRNA. Recent studies have shown that some exosomes derived from MSCs can improve I/R injury, promote angiogenesis and inhibit apoptosis. This study confirmed that hDPSC-Exos could promote the proliferation, migration and tubule formation of vein endothelial cells in a dose-dependent manner. Inhibition of PI3K/AKT signaling pathway can reduce the above promoting effects, suggesting that these processes may depend on the activation of PI3K/AKT signaling pathway. In the rat model, hDPSC-Exos can significantly improve the survival rate and microvessel density of flaps, and inhibit epithelial cell apoptosis.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Daño por Reperfusión , Humanos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Pulpa Dental , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA