Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 306: 114502, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033891

RESUMEN

Adsorption is the primary mechanism of antibiotic removal in wastewater treatment plants, wherein the extracellular polymeric substances (EPS) of the activated sludge play an important role. Due to their complex characteristics, the effect of EPS components on antibiotic adsorption is unknown. Therefore, in this study, the role of main components of EPS in antibiotic adsorption was explored using enzymatic treatment. The results revealed that proteinase K and α-amylase can efficiently hydrolyse the proteins and polysaccharides of EPS. The protein content of EPS reduced from 31.25 mg/g VSS to 21.53, 18.75, and 10.76 mg/g VSS, after treatment with proteinase K, α-amylase and their combination, respectively; the polysaccharides content also observed a similar decrease from 15.20 mg/g VSS to 8.22, 7.83, and 6.03 mg/g VSS, respectively. The humic substance in EPS was stable during enzymatic treatment. The equilibrium adsorption capacity of activated sludge treated by enzyme for trimethoprim (TMP)- a typical antibiotic, was significantly increased from 2.19 µg/g VSS to 4.68, 5.34, and 8.36 µg/g VSS after treatment with proteinase K, α-amylase and their mixture. The adsorption process was adequately described by pseudo-second-order kinetic model. A multivariable linear regression model was subsequently used to quantify the adsorption capacity of activated sludge for TMP considering the concentration of EPS components. The modelling and validated results showed that the model could satisfactorily predict the TMP adsorption capacity. The results of this study can provide new insights into the role of EPS on antibiotic transformation in biological wastewater treatment systems.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Purificación del Agua , Adsorción , Aguas del Alcantarillado , Trimetoprim
2.
Chemosphere ; 274: 129798, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33540314

RESUMEN

The extracellular polymeric substances (EPS) of activated sludge are a mixture of high molecular weight polymers secreted by microorganisms, which are mainly composed of proteins, polysaccharides and humic substances. It is widely accepted that EPS have a good adsorption ability for pollutants with different functional groups. However, recent studies showed the EPS had an inhibitory effect on pollutant sorption, which is contradictory to previous viewpoint. Therefore, in this study, three types of activated sludge with different EPS contents and compositions were used to investigate the role of EPS in an antibiotic-trimethoprim (TMP) sorption process at environmentally relevant concentration. The in situ experiments results showed the adsorption capacity of activated sludge for TMP were increased from 2.98, 5.37 and 28.33 µg/g VSS to 7.87, 12.93 and 150.24 µg/g VSS in nitrifying activated sludge, wastewater treatment plant activated sludge and anaerobic ammonia-oxidized activated sludge, respectively after EPS extracted. The adsorption process can be well described by the pseudo-second-order kinetic model. Results of zeta potential, contact angles and infrared spectrum showed TMP replacing proteins embedded into the cell membrane enhancing the TMP adsorption capacity of activated sludge after EPS extraction. Our results demonstrated that less proteins in EPS of activated sludge is more beneficial for TMP adsorption removal.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Adsorción , Matriz Extracelular de Sustancias Poliméricas , Trimetoprim
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA