Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(38): 20921-20925, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34288300

RESUMEN

A novel organic molecule, 2,4,6-tris[1-(trimethylamonium)propyl-4-pyridiniumyl]-1,3,5-triazine hexachloride, was developed as a reversible six-electron storage electrolyte for use in an aqueous redox flow battery (ARFB). Physicochemical characterization reveals that the molecule evolves from a radical to a biradical and finally to a quinoid structure upon accepting four electrons. Both the diffusion coefficient and the rate constant were sufficiently high to run a flow battery with low concentration and kinetics polarization losses. In a demonstration unit, the assembled flow battery affords a high specific capacity of 33.0 Ah L-1 and a peak power density of 273 mW cm-2 . This work highlights the rational design of electroactive organics that can manipulate multi-electron transfer in a reversible way, which will pave the way to development of energy-dense, manageable and low-cost ARFBs.

2.
J Neurophysiol ; 120(1): 162-170, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29589810

RESUMEN

People perceive better in cardinal directions compared with oblique ones. This directional effect, called oblique effect, has been documented in perception studies for a long time. However, typical motor studies do not differentiate learning in different directions. In this study we identify a significant directional effect in motor learning using visuomotor rotation paradigms. We find that adaptation to visual perturbations yields more savings when both initial learning and relearning are performed in cardinal directions than in oblique directions. We hypothesize that this directional effect arises from relatively higher error saliency in cardinal directions. Consistent with this hypothesis, we successfully increased savings in the oblique directions, which showed no saving effect before, by enhancing the error saliency with augmented visual feedback during learning. Our findings suggest that movement direction plays an important role in motor learning, especially when learning signals are direction specific. Our results also provide new insights about the role of motor errors in the formation and retrieval of motor memory and practical implications for promoting learning in motor rehabilitation and athletic training. NEW & NOTEWORTHY People perceive better when the stimulus is in cardinal directions than in oblique directions. Whether a similar directional effect exists in motor learning is unknown. Using a motor learning paradigm, we show that people relearn to compensate for a previously encountered perturbation faster when they move in cardinal directions than when they move in oblique directions. Further experimentation supports that this motor directional effect likely results from better sensory saliency of motor errors in cardinal directions.


Asunto(s)
Desempeño Psicomotor , Aprendizaje Espacial , Femenino , Humanos , Locomoción , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA