Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nano Lett ; 24(1): 331-338, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38108571

RESUMEN

Solar-driven photothermal catalytic H2 production from lignocellulosic biomass was achieved by using 1T-2H MoS2 with tunable Lewis acidic sites as catalysts in an alkaline aqueous solution, in which the number of Lewis acidic sites derived from the exposed Mo edges of MoS2 was successfully regulated by both the formation of an edge-terminated 1T-2H phase structure and tunable layer number. Owing to the abundant Lewis acidic sites for the oxygenolysis of lignocellulosic biomass, the 1T-2H MoS2 catalyst shows high photothermal catalytic lignocellulosic biomass-to-H2 transformation performance in polar wood chips, bamboo, rice straw corncobs, and rice hull aqueous solutions, and the highest H2 generation rate and solar-to-H2 (STH) efficiency respectively achieves 3661 µmol·h-1·g-1 and 0.18% in the polar wood chip system under 300 W Xe lamp illumination. This study provides a sustainable and cost-effective method for the direct transformation of renewable lignocellulosic biomass to H2 fuel driven by solar energy.

2.
Inorg Chem ; 63(21): 9715-9719, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38748179

RESUMEN

Photocatalytic nitrogen fixation from N2 provides an alternative strategy for ammonia (NH3) production, but it was limited by the consumption of a sacrificial electron donor for the currently reported half-reaction system. Here, we use naturally abundant and renewable cellulose as the sacrificial reagent for photocatalytic nitrogen fixation over oxygen-vacancy-modified MoO3 nanosheets as the photocatalyst. In this smartly designed photocatalytic system, the photooxidation of cellulose not only generates value-added chemicals but also provides electrons for the N2 reduction reaction and results in the production of NH3 with a maximum rate of 68 µmol·h-1·g-1. Also, the oxygen vacancies provide efficient active sites for both cellulose oxygenolysis and nitrogen fixation reactions. This work represents useful inspiration for realizing nitrogen fixation coupled with the generation of value-added chemicals from N2 and cellulose through a photocatalysis strategy.

3.
Inorg Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965989

RESUMEN

Solar photocatalytic H2 production from lignocellulosic biomass has attracted great interest, but it suffers from low photocatalytic efficiency owing to the absence of highly efficient photocatalysts. Herein, we designed and constructed ultrathin MoS2-modified porous TiO2 microspheres (MT) with abundant interface Ti-S bonds as photocatalysts for photocatalytic H2 generation from lignocellulosic biomass. Owing to the accelerated charge transfer related to Ti-S bonds, as well as the abundant active sites for both H2 and ●OH generation, respectively, related to the high exposed edge of MoS2 and the large specific surface area of TiO2, MT photocatalysts demonstrate good performance in the photocatalytic conversion of α-cellulose and lignocellulosic biomass to H2. The highest H2 generation rate of 849 µmol·g-1·h-1 and apparent quantum yield of 4.45% at 380 nm was achieved in α-cellulose aqueous solution for the optimized MT photocatalyst. More importantly, lignocellulosic biomass of corncob, rice hull, bamboo, polar wood chip, and wheat straw were successfully converted to H2 over MT photocatalysts with H2 generation rate of 10, 19, 36, 29, and 8 µmol·g-1·h-1, respectively. This work provides a guiding design approach to develop highly active photocatalysts via interface engineering for solar H2 production from lignocellulosic biomass.

4.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570702

RESUMEN

The aim of this study was to microencapsulate probiotic bacteria (Lactobacillus acidophilus 11073) using whey-protein-isolate (WPI)-octenyl-succinic-anhydride-starch (OSA-starch)-complex coacervates and to investigate the effects on probiotic bacterial viability during spray drying, simulated gastrointestinal digestion, thermal treatment and long-term storage. The optimum mixing ratio and pH for the preparation of WPI-OSA-starch-complex coacervates were determined to be 2:1 and 4.0, respectively. The combination of WPI and OSA starch under these conditions produced microcapsules with smoother surfaces and more compact structures than WPI-OSA starch alone, due to the electrostatic attraction between WPI and OSA starch. As a result, WPI-OSA-starch microcapsules showed significantly (p < 0.05) higher viability (95.94 ± 1.64%) after spray drying and significantly (p < 0.05) better protection during simulated gastrointestinal digestion, heating (65 °C/30 min and 75 °C/10 min) and storage (4/25 °C for 12 weeks) than WPI-OSA-starch microcapsules. These results demonstrated that WPI-OSA-starch-complex coacervates have excellent potential as a novel wall material for probiotic microencapsulation.


Asunto(s)
Probióticos , Suero Lácteo , Cápsulas/química , Almidón/química , Anhídridos , Viabilidad Microbiana
5.
Chemphyschem ; 23(22): e202200319, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-35817732

RESUMEN

Visible-light-driven photocatalytic cellulose-to-H2 conversion system was successfully designed by using MoS2 /ZnIn2 S4 as the photocatalyst and cellulase as the enzyme catalyst. At first, the cellulose was converted to glucose by cellulase. The generated glucose acted as an efficient hole trapper and electron donor, which was further converted into H2 through photocatalytic reaction over MoS2 /ZnIn2 S4 under visible light irradiation. The optimum H2 generation rate achieved under visible light irradiation (λ>420 nm) was 12.2 µmol ⋅ h-1 ⋅ g-1 in the presence of 100 mg of 3 % MoS2 /ZnIn2 S4 , 100 mg cellulase and 2 g poplar wood chip. These results open up a new possibility for the development of efficient visible-light-responding photocatalytic cellulose to H2 conversion system that combine photocatalysis and enzyme technology.


Asunto(s)
Celulasa , Molibdeno , Molibdeno/efectos de la radiación , Hidrógeno , Celulosa , Luz , Glucosa
6.
Inorg Chem ; 61(1): 738-745, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34914388

RESUMEN

Developing earth-abundant electrocatalysts for efficient oxygen evolution reaction (OER) is of paramount significance for electrochemical water splitting. Herein, an efficient in situ etching-deposition growth strategy is employed to transform pristine two-dimensional (2D) Co-metal-organic frameworks into hollow Ni/Co double hydroxide arrays (denoted as Ni/Co-DH), which not only yields a larger surface area and exposes more active sites but also decreases the activation energy to the OER. With structural and compositional benefits, the Ni/Co-DH exhibits high performance with an overpotential of 229 mV at 10 mA cm-2 and exceptional long-term stability of over 90 h in 1 M KOH medium for OER, comparable to most non-noble oxygen evolution catalysts reported so far. In addition, a two-electrode Ni/Co-DH∥Pt/C electrolyzer also requires a considerably low voltage of 1.58 V at 10 mA cm-2 for overall water splitting. This study affords a rational strategy to develop water-alkali electrolyzers with great complexity for large-scale water-splitting systems.

7.
Angew Chem Int Ed Engl ; 61(20): e202201430, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35253345

RESUMEN

Herein, we present a stable water-soluble cobalt complex supported by a dianionic 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol) ligand scaffold, which is a rare example of a high-oxidation species, as demonstrated by structural, spectroscopic and theoretical data. Electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements revealed that the CoIV center of the mononuclear complex in the solid state resides in the high spin state (sextet, S=5/2). The complex can effectively catalyze water oxidation via a single-site water nucleophilic attack pathway with an overpotential of only 360 mV in a phosphate buffer with a pH of 6. The key intermediate toward water oxidation was speculated based on theoretical calculations and was identified by in situ spectroelectrochemical experiments. The results are important regarding the accessibility of high-oxidation state metal species in synthetic models for achieving robust and reactive oxidation catalysis.


Asunto(s)
Cobalto , Agua , Catálisis , Cobalto/química , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Agua/química
8.
Chemphyschem ; 22(21): 2168-2171, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34406686

RESUMEN

A feasible tuning method for oxygen vacancies was realized by annealing under 3 atm H2 with (001)-exposed TiO2 nanosheets. The colored TiO2 sample exhibits an excellent N2 photo-fixation rate owing to the abundant oxygen vacancies (OVs) thus demonstrating that annealing with high pressure H2 is exceedingly efficient for tuning surface OVs.

9.
Nanotechnology ; 32(26)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33735849

RESUMEN

Water pollution is a global environmental problem that has attracted great concern, and functional carbon nanomaterials are widely used in water treatment. Here, to optimize the removal performance of both oil/organic matter and dye molecules, we fabricated porous and hydrophobic core-shell sponges by growing graphene on three-dimensional stacked copper nanowires. The interconnected pores between the one-dimensional nanocore-shells construct the porous channels within the sponge, and the multilayered graphene shells equip the sponge with a water contact angle over 120° even under acidic and alkaline environments, which enables fast and efficient cleanup of oil on or under the water. The core-shell sponge can absorb oil or organic solvents with densities 40-90 times its own, and its oil-sorption capacity is much larger than those of other porous materials like activated carbon and loofah. On the other hand, the adsorption behavior of the core-shell sponge to dyes including methyl orange (MO) and malachite green (MG), also common water pollutants, was also measured. Dynamic adsorption of MG under cyclic compression demonstrated a higher adsorption rate than that in the static state, and an acidic environment was favorable for the adsorption of MO molecules. Finally, the adsorption isotherm for MO molecules was analyzed and fitted with the Langmuir model, and the adsorption kinetics were studied in depth as well.

10.
Nanotechnology ; 31(36): 365705, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32454473

RESUMEN

Fluorescent anti-counterfeiting technique is generally based on the development of luminescent materials, which generally exhibit single-mode emissions under single-wavelength excitation, thus resulting in a poor anti-fake effect. To improve the anti-forgery performance of fluorescent anti-counterfeiting approaches, dual-mode luminescent nanoparticles with the form of a ß-NaGdF4:Yb/Ho/Ce@ß-NaYF4:Tb/Eu core-shell structure have been skillfully designed and synthesized by a co-precipitation strategy. Through the cross-relaxation process between Ce3+ and Ho3+ ions in the inner core region, the up-conversion luminescence colors of the as-synthesized samples can be turned from green to yellow and finally to red when adjusting the dopant concentration of Ce3+ in the core. By selecting Ce3+ as the sensitizer for harvesting the energy of incident ultraviolet (UV) light and introducing Gd3+ as the ideal intermediate for subsequent energy migration, the down-converting emission colors of the as-obtained samples are also regulated from green to red via a Gd3+-assisted interface energy transfer processes (Ce3+ → Gd3+ → Tb3+, Ce3+ → Gd3+ → Tb3+ → Eu3+). Consequently, dual-mode luminescence with multi-color outputs can be achieved in the pre-designed core-shell nanostructure under the excitation of a 980 nm near-infrared laser and 254 nm UV light. The designed nanoarchitecture with bright dual-mode emissions and tunable colors greatly improves the ability of modern anti-counterfeiting, demonstrating its promising applications in anti-fake and optical multiplexing.

11.
Small ; 14(23): e1800634, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29749012

RESUMEN

Cu nanowires (CuNWs) are considered as a promising candidate to develop high performance metal aerogels, yet the construction of robust and stable 3D porous structures remains challenging which severely limits their practical applications. Here, graphene-hybridized CuNW (CuNW@G) core-shell aerogels are fabricated by introducing a conformal polymeric coating and in situ transforming it into multilayered graphene seamlessly wrapped around individual CuNWs through a mild thermal annealing process. The existence of the outer graphene shell reinforces the 3D bulk structure and significantly slows down the oxidation process of CuNWs, resulting in improved mechanical property and highly stable electrical conductivity. When applied in electromagnetic interference shielding, the CuNW@G core-shell aerogels exhibit an average effectiveness of ≈52.5 dB over a wide range (from 8.2 to 18 GHz) with negligible degradation under ambient conditions for 40 d. Mechanism analysis reveals that the graphene shell with functional groups enables dual reflections on the core-shell and a multiple dielectric relaxation process, leading to enhanced dielectric loss and energy dissipation within the core-shell aerogels. The flexible core-shell-structured CuNW@G aerogels, with superior mechanical robustness and electrical stability, have potential applications in many areas such as advanced energy devices and functional composites.

12.
Inorg Chem ; 57(15): 8978-8987, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30035535

RESUMEN

Non-rare-earth Mn4+-doped double-perovskite (Ba1- xSr x)2YSbO6:Mn4+ red-emitting phosphors with adjustable photoluminescence are fabricated via traditional high-temperature sintering reaction. The structural evolution, variation of Mn4+ local environment, luminescent properties, and thermal quenching are studied systematically. With elevation of Sr2+ substituting content, the major diffraction peak moves up to a higher angle gradually. Impressively, with increasing the substitution of Ba2+ with Sr2+ cation from 0 to 100%, the emission band shifts to short-wavelength in a systematic way resulting from the higher transition energy from excited states to ground states. Besides, this blue-shift appearance can be illuminated adequately using the crystal field strength. The thermal quenching of the obtained solid solution is dramatically affected by the composition, with the PL intensity increasing 16% at 423 K going from x = 0 to 1.0. The w-LEDs component constructed by coupling the UV-LED chip with red/green/blue phosphors demonstrate an excellent correlated color temperature (CCT) of 3404 K, as well as color rendering index (CRI) of 86.8.

13.
Nanotechnology ; 29(39): 395601, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-29968569

RESUMEN

Recently, semiconducting chalcogenide nanostructures have attracted intense attention due to their excellent properties and broad applications, especially metal chalcogenides in the form of A2(V)B3(VI). Here we synthesized one-dimensional (1D) bismuth sulfide (Bi2S3) nanostructures with a length of more than 100 µm via a one-step hydrothermal method, and found that the reaction temperature and the alkali concentration play vital roles in the morphology of the 1D nanostructures. Since the as-synthesized Bi2S3 nanostructures were disordered in powder form, it is necessary to align them with ordered orientation and uniform distribution before further application. A blown bubble method was specifically applied to align these ultralong 1D nanostructures, and the assembly mechanism was also deeply analyzed, including the drift of nanostructures in the bubble film thickness direction, the relationship between (nanowire) NW spacing and array density, and the angle deviation of aligned arrays assembled from different bubble solutions. Interestingly, the initial straight Bi2S3 NWs could also be converted into buckled nanosprings (NSs) with regular pitches during the assembly process, and different NS formation stages were observed. A possible deformation mechanism or load bearing model of the wavy NS was proposed and verified, and the Young's modulus of an individual NW was figured out for the first time. After annealing under a N2 atmosphere, the aligned Bi2S3 NWs embedded in the bubble film were exposed, and the clean arrays were fabricated into functional optoelectronic devices such as photodetectors with a high performance.

14.
Chem Soc Rev ; 46(3): 603-631, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-27808300

RESUMEN

Solar H2 generation from water has been intensively investigated as a clean method to convert solar energy into hydrogen fuel. During the past few decades, many studies have demonstrated that metal complexes can act as efficient photoactive materials for photocatalytic H2 production. Here, we review the recent progress in the application of metal-complex chromophores to solar-to-H2 conversion, including metal-complex photosensitizers and supramolecular photocatalysts. A brief overview of the fundamental principles of photocatalytic H2 production is given. Then, different metal-complex photosensitizers and supramolecular photocatalysts are introduced in detail, and the most important factors that strictly determine their photocatalytic performance are also discussed. Finally, we illustrate some challenges and opportunities for future research in this promising area.

15.
Am J Physiol Cell Physiol ; 310(3): C216-26, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26669941

RESUMEN

Recent studies have shown that activation of liver X receptors (LXRs) attenuates the development of atherosclerosis, not only by regulating lipid metabolism but also by suppressing inflammatory signaling. Sphingosine 1-phosphate receptor 2 (S1PR2), an important inflammatory gene product, plays a role in the development of various inflammatory diseases. It was proposed that S1PR2 might be regulated by LXR-α. In the present study, the effect of LXR-α on tumor necrosis factor-α (TNF-α)-induced S1PR2 expression in human umbilical vein endothelial cells (HUVECs) was investigated and the underlying mechanism was explored. The results demonstrated that TNF-α led to an increase in S1PR2 expression and triggered a downregulation of LXR-α expression in HUVECs as well. Downregulation of LXR-α with specific small interfering RNA (siRNA) remarkably enhanced the primary as well as TNF-α-induced expression of S1PR2 in HUVECs. Activation of LXR-α by agonist GW3965 inhibited both primary and TNF-α-induced S1PR2 expression. GW3965 also attenuated S1PR2-induced endothelial barrier dysfunction. The data further showed that TNF-α induced a significant decrease in miR-130a-3p expression. Overexpression of miR-130a-3p with mimic product reduced S1PR2 protein expression, and inhibition of miR-130a-3p by specific inhibitor resulted in an increase in S1PR2 protein expression. Furthermore, activation of LXRs with agonist enhanced the expression of miR-130a-3p, and knockdown of LXR-α by siRNA suppressed miR-130a-3p expression. These results suggest that LXR-α might downregulate S1PR2 expression via miR-130a-3p in quiescent HUVECs. Stimulation of TNF-α attenuates the activity of LXR-α and results in enhanced S1PR2 expression.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Benzoatos/farmacología , Bencilaminas/farmacología , Células Cultivadas , Regulación hacia Abajo , Impedancia Eléctrica , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Receptores X del Hígado , Lisofosfolípidos/farmacología , MicroARNs/genética , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/genética , Permeabilidad , Interferencia de ARN , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba , Proteína de la Zonula Occludens-1/metabolismo
16.
Chemistry ; 21(28): 10003-7, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26096270

RESUMEN

A new heterometallic supramolecular complex, consisting of an iridium carbene-based unit appended to a platinum terpyridine acetylide unit, representing a new Ir(III) -Pt(II) structural motif, was designed and developed to act as an active species for photocatalytic hydrogen production. The results also suggested that a light-harvesting process is essential to realize the solar-to-fuel conversion in an artificial system as illustrated in the natural photosynthetic system.

17.
Chemphyschem ; 16(14): 2925-30, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26264140

RESUMEN

The complex [Ni(bpy)3](2+) (bpy=2,2'-bipyridine) is an active catalyst for visible-light-driven H2 production from water when employed with [Ir(dfppy)2 (Hdcbpy)] [dfppy=2-(3,4-difluorophenyl)pyridine, Hdcbpy=4-carboxy-2,2'-bipyridine-4'-carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2 -evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3 ](2+). This study may offer a new paradigm for constructing simple and noble-metal-free catalysts for photocatalytic hydrogen production.

18.
Exp Physiol ; 100(1): 95-107, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25557733

RESUMEN

NEW FINDINGS: What is the central question of this study? Why do different doses of sphingosine-1-phosphate (S1P) induce distinct biological effects in endothelial cells? What is the main finding and its importance? S1P at physiological concentrations preserved endothelial barrier function by binding to S1P receptor 1, then triggering Ca(2+) release from endoplasmic reticulum through phosphoinositide phospholipase C and inositol triphosphate, and consequently strengthening tight junction and F-actin assembly through Rac1 activation. Excessive S1P induced endothelial malfunction by activating S1P receptor 2 and RhoA/ROCK pathway, causing F-actin and tight junction disorganisation. Extracellular Ca(2+) influx was involved in this process. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid in plasma, and its plasma concentration can be adjusted through a complex metabolic process. The alterations in S1P levels and the activation of receptors collaboratively regulate distinct biological effects. This study was performed to investigate comparatively the effect of different concentrations of S1P on endothelial barrier function and to explore the roles of S1P receptors (S1PRs), Rho GTPases and calcium in S1P-induced endothelial responses. Endothelial barrier function was studied using transendothelial electric resistance and a resistance meter in human umbilical vein endothelial cells. Specific agonists or antagonists were applied to control the activation of S1P receptors and the release of calcium from different cellular compartments. The results indicated that at physiological concentrations, S1P preserved endothelial barrier function by binding with S1PR1. The activation of S1PR1 triggered the release of intracellular Ca(2+) from the endoplasmic reticulum through the PI-phospholipase C and inositol trisphosphate pathways. Consequently, the Rho GTPase Rac1 was activated, strengthening the assembly of tight junction proteins and F-actin. However, excessive S1P induced endothelial barrier dysfunction by activating S1PR2 followed by the RhoA/RhoA kinase pathway, causing the disorganization of F-actin and the disassembly of the tight junction protein ZO-1. An influx of extracellular Ca(2+) was involved in this process. These data suggest that physiological and excessive amounts of S1P induce different responses in human umbilical vein endothelial cells; the activation of the 1PR1-PLC-IP3 R-Ca(2+) -Rac1 pathway governs the low-dose S1P-enhanced endothelial barrier integrity, and the activation of S1PR2-calcium influx-RhoA/ROCK dominates the high-dose S1P-induced endothelial monolayer hyperpermeability response.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Lisofosfolípidos/farmacología , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/análogos & derivados , Permeabilidad Capilar/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Impedancia Eléctrica , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato , Factores de Tiempo , Proteína de Unión al GTP rac1/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
Foods ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540849

RESUMEN

Starch-lipid complexes were prepared from high amylose starch (HAS) with stearic acid (SA) or potassium stearate (PS) at different molar concentrations. The complexes (HAS-PS) formed between HAS and PS showed polyelectrolyte characteristics with ζ-potential ranging from -22.2 to -32.8 mV, and the electrostatic repulsion between anionic charges restricted the starch chain reassociation and facilitated the formation of V-type crystalline structures upon cooling. The hydrophobic effects enabled recrystallization of the SA, and the HAS-SA complexes exhibited weaker V-type crystalline structures than the HAS-PS complexes; both HAS-SA/PS complexes were of a similar "mass fractal" type, with a dimension varied from 2.15 to 2.96. The HAS-SA complexes had a considerable content of resistant starch (RS, 16.1~29.2%), whereas negligible RS was found in the HAS-PS complexes. The findings from the present study imply that the molecular order of starch chains and the macro-structures of starch particles are more important to regulate the digestibility of starch-lipid complexes than the crystalline structures.

20.
Ultrason Sonochem ; 107: 106911, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761771

RESUMEN

The hardness properties of unwashed surimi gel are considered as the qualities of gelation defect. This research investigated the effect of ultrasound-assisted first-stage thermal treatment (UATT) on the physicochemical properties of unwashed Silver Carp surimi gel, and the enhancement mechanism. UATT could reduce protein particle size, which significantly reduced from 142.22 µm to 106.70 µm after 30 min of UATT compared with the nature protein. This phenomenon can promote the protein crosslinking, resulting in the hardness of surimi gel increased by 15.08 %. Partially unfolded structure of myofibrillar protein and exposures of tryptophan to water, lead to the increase in the zeta potential absolute value, driven by UATT. The reduced SH group level and the conformational conversion of proteins from random coiling to α-helix and ß-sheet, which was in support of intermolecular interaction and gel network construction. The results are valuable for processing protein gels and other food products.


Asunto(s)
Carpas , Geles , Animales , Geles/química , Temperatura , Proteínas de Peces/química , Productos Pesqueros/análisis , Ondas Ultrasónicas , Miofibrillas/química , Proteínas Musculares/química , Manipulación de Alimentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA