Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 146(9): 6252-6265, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377559

RESUMEN

Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Antracenos , Línea Celular Tumoral
2.
Nano Lett ; 23(7): 2659-2668, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36940420

RESUMEN

The targeting of tumor metabolism as a novel strategy for cancer therapy has attracted tremendous attention. Herein, we develop a dual metabolism inhibitor, Zn-carnosine metallodrug network nanoparticles (Zn-Car MNs), which exhibits good Cu-depletion and Cu-responsive drug release, causing potent inhibition of both OXPHOS and glycolysis. Notably, Zn-Car MNs can decrease the activity of cytochrome c oxidase and the content of NAD+, so as to reduce ATP production in cancer cells. Thereby, energy deprivation, together with the depolarized mitochondrial membrane potential and increased oxidative stress, results in apoptosis of cancer cells. In result, Zn-Car MNs exerted more efficient metabolism-targeted therapy than the classic copper chelator, tetrathiomolybdate (TM), in both breast cancer (sensitive to copper depletion) and colon cancer (less sensitive to copper depletion) models. The efficacy and therapy of Zn-Car MNs suggest the possibility to overcome the drug resistance caused by metabolic reprogramming in tumors and has potential clinical relevance.


Asunto(s)
Neoplasias de la Mama , Carnosina , Humanos , Femenino , Carnosina/metabolismo , Carnosina/farmacología , Cobre/farmacología , Glucólisis , Zinc
3.
J Nanobiotechnology ; 21(1): 434, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980476

RESUMEN

Manganese-based nanomaterials (Mn-nanomaterials) hold immense potential in cancer diagnosis and therapies. However, most Mn-nanomaterials are limited by the low sensitivity and low efficiency toward mild weak acidity (pH 6.4-6.8) of the tumor microenvironment, resulting in unsatisfactory therapeutic effect and poor magnetic resonance imaging (MRI) performance. This study introduces pH-ultrasensitive PtMn nanoparticles as a novel platform for enhanced ferroptosis-based cancer theranostics. The PtMn nanoparticles were synthesized with different diameters from 5.3 to 2.7 nm with size-dominant catalytic activity and magnetic relaxation, and modified with an acidity-responsive polymer to create pH-sensitive agents. Importantly, R-PtMn-1 (3 nm core) presents "turn-on" oxidase-like activity, affording a significant enhancement ratio (pH 6.0/pH 7.4) in catalytic activity (6.7 folds), compared with R-PtMn-2 (4.2 nm core, 3.7 folds) or R-PtMn-3 (5.3 nm core, 2.1 folds), respectively. Moreover, R-PtMn-1 exhibits dual-mode contrast in high-field MRI. R-PtMn-1 possesses a good enhancement ratio (pH 6.4/pH 7.4) that is 3 or 3.2 folds for T1- or T2-MRI, respectively, which is higher than that of R-PtMn-2 (1.4 or 1.5 folds) or R-PtMn-3 (1.1 or 1.2 folds). Moreover, their pH-ultrasensitivity enabled activation specifically within the tumor microenvironment, avoiding off-target toxicity in normal tissues during delivery. In vitro studies demonstrated elevated intracellular reactive oxygen species production, lipid peroxidation, mitochondrial membrane potential changes, malondialdehyde content, and glutathione depletion, leading to enhanced ferroptosis in cancer cells. Meanwhile, normal cells remained unaffected by the nanoparticles. Overall, the pH-ultrasensitive PtMn nanoparticles offer a promising strategy for accurate cancer diagnosis and ferroptosis-based therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Manganeso/química , Medicina de Precisión , Medios de Contraste/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral
4.
Angew Chem Int Ed Engl ; 61(48): e202206074, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36222012

RESUMEN

Lipid peroxides accumulation induced ferroptosis is an effective cell death pathway for cancer therapy. However, the hypoxic condition of tumor microenvironment significantly suppresses the efficacy of ferroptosis. Here, we design a novel nanoplatform to overcome hypoxia-induced ferroptosis resistance. Specifically, we synthesize a novel kind of perfluorocarbon (PFOB)@manganese oxide (MnOx) core-shell nanoparticles (PM-CS NPs). Owing to the good carrier of O2 as fuel, PM-CS NPs can induce higher level of ROS generation, lipid peroxidation and GSH depletion, as well as lower activity of GPX4, compared with MnOx NPs alone. Moreover, the supplement of O2 can relieve tumor hypoxia to break down the storage of intracellular lipid droplets and increase expression of ACSL4 (a symbol for ferroptosis sensitivity). Furthermore, upon stimulus of GSH or acidity, PM-CS NPs exhibit the "turn on" 19 F-MRI signal and activatable T1 /T2 -MRI contrast for correlating with the release of Mn. Finally, PM-CS NPs exert high cancer inhibition rate for ferroptosis based therapy via synergetic combination of O2 -mediated enhancement of key pathways of ferroptosis.


Asunto(s)
Ferroptosis , Nanoestructuras , Humanos , Línea Celular Tumoral , Imagen por Resonancia Magnética , Hipoxia
5.
Angew Chem Int Ed Engl ; 61(31): e202117229, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35460321

RESUMEN

Ferroptosis exhibits potential to damage drug-resistant cancer cells. However, it is still restricted with the "off-target" toxicity from the undesirable leakage of metal ions from ferroptosis agents, and the lack of reliable imaging for monitoring the ferroptosis process in living systems. Herein, we develop a novel ternary alloy PtWMn nanocube as a Mn reservoir, and further design a microenvironment-triggered nanoplatform that can accurately release Mn ions within the tumor to increase reactive oxygen species (ROS) generation, produce O2 and consume excess glutathione for synergistically enhancing nonferrous ferroptosis. Moreover, this nanoplatform exerts a responsive signal in high-field magnetic resonance imaging (MRI), which enables the real-time report of Mn release and the monitoring of ferroptosis initiation through the signal changes of T1 -/T2 -MRI. Thus, our nanoplatform provides a novel strategy to store, deliver and precisely release Mn ions for MRI-guided high-specificity ferroptosis therapy.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Aleaciones , Línea Celular Tumoral , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias/patología , Microambiente Tumoral
6.
Exploration (Beijing) ; 3(3): 20220002, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37933379

RESUMEN

The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments. Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.

7.
ACS Nano ; 17(10): 9529-9542, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37154230

RESUMEN

Hepatic ischemia-reperfusion (I/R) injury accompanied by oxidative stress is responsible for postoperative liver dysfunction and failure of liver surgery. However, the dynamic non-invasive mapping of redox homeostasis in deep-seated liver during hepatic I/R injury remains a great challenge. Herein, inspired by the intrinsic reversibility of disulfide bond in proteins, a kind of reversible redox-responsive magnetic nanoparticles (RRMNs) is designed for reversible imaging of both oxidant and antioxidant levels (ONOO-/GSH), based on sulfhydryl coupling/cleaving reaction. We develop a facile strategy to prepare such reversible MRI nanoprobe via one-step surface modification. Owing to the significant change in size during the reversible response, the imaging sensitivity of RRMNs is greatly improved, which enables RRMNs to monitor the tiny change of oxidative stress in liver injury. Notably, such reversible MRI nanoprobe can non-invasively visualize the deep-seated liver tissue slice by slice in living mice. Moreover, this MRI nanoprobe can not only report molecular information about the degree of liver injury but also provide anatomical information about where the pathology occurred. The reversible MRI probe is promising for accurately and facilely monitoring I/R process, accessing injury degree and developing powerful strategy for precise treatment.


Asunto(s)
Hepatopatías , Daño por Reperfusión , Ratones , Animales , Hígado/metabolismo , Daño por Reperfusión/metabolismo , Hepatopatías/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Imagen por Resonancia Magnética
8.
J Mater Chem B ; 11(26): 5933-5952, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37254674

RESUMEN

Nanozymes are nanoscale materials that display enzyme-like properties, which have been improved to eliminate the limitations of natural enzymes and further broaden the use of conventional artificial enzymes. In the last decade, the research and exploration of nanozymes have attracted considerable attention in the chemical and biological fields, especially in the fields of biomedicine and tumor therapy. To date, plenty of nanozymes have been developed with the single or multiple activities of natural enzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glucose oxidase (GOx). Tumor-characteristic metabolites can be transformed into toxic substances under the catalysis of nanozymes to kill tumor cells. However, the therapeutic effects of nanozymes greatly depend on their catalytic activity, which displays a lot of differences in vitro and in vivo. Moreover, the complex tumor environment (low pH, high H2O2 and GSH concentration, hypoxia, etc.) plays an important role in affecting their catalytic activity. Besides, the uncontrollable catalysis of nanozymes may lead to the destruction of normal tissues. To solve these problems, researchers have exploited several imaging methods to monitor the reaction processes during catalysis, including optical imaging methods (fluorescence and chemiluminescence), photoacoustic imaging, and magnetic resonance imaging. In this review, we have summarized the development of tumor treatment using nanozymes in recent years, along with the current imaging tools to monitor the catalyzing activity of nanozymes. Representative examples have been elaborated on to show the current development of these imaging tools. We hope this review will provide some instructive perspectives on the development of nanozymes and promote the applications of imaging-guided tumor therapeutics.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Peróxido de Hidrógeno , Glucosa Oxidasa/química , Peroxidasa , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
9.
ACS Nano ; 17(14): 13792-13810, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37458417

RESUMEN

Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance ("ferroptosis resistance"), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can "turn on" the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1's functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Endonucleasas , Reparación del ADN , Estrés Oxidativo , Línea Celular Tumoral
10.
Theranostics ; 12(14): 6207-6222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168615

RESUMEN

Rationale: Ferroptosis drugs inducing cancer immunogenic cell death (ICD) have shown the potential of immunotherapy in vivo. However, the current ferroptosis drugs usually induce the insufficient immune response because of the low ROS generation efficiency. Methods: Herein, we design zinc-fluorouracil metallodrug networks (Zn-Fu MNs), by coordinating Zn and Fu via facile one-pot preparation, to inactivate mitochondrial electron transport for enhanced ROS production and immune activation. Results: Zn-Fu MNs can be responsive toward acidity and adenosine triphosphate (ATP) with the release of Fu and Zn2+, during which Zn2+ can induce mitochondrion disruption to produce ROS, resulting in ferroptosis of cancer cells and 5-Fu interferes with DNA synthesis in nuclei with 19F-MRI signal to be switched on for correlating drug release. With the synergistic effect of DNA damage and ferroptosis, the cancer cells are forced to promote ICD. Thereby, Zn-Fu MNs exhibit the excellent immune response without any other antigens loading. As a result, the infiltration of T cells within tumor and activation of immune cells in spleen have been greatly enhanced. Conclusions: Combined DNA damage and ferroptosis, Zn-Fu MNs induce the violent emission of tumor associated antigens within cancer cells which will sensitize naive dendritic cells and promote the activation and recruitment of cytotoxic T lymphocytes to exterminate cancer cells. Therefore, the obtained Zn-Fu MNs as ferroptosis inducers can effectively remodel immunosuppressive tumor microenvironment and activate antitumor immune reaction.


Asunto(s)
Ferroptosis , Adenosina Trifosfato , Línea Celular Tumoral , ADN , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zinc
11.
ACS Appl Mater Interfaces ; 12(29): 32493-32502, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32573191

RESUMEN

Combination therapy via stimulus-responsive drug release is known to improve treatment efficacy and minimize side effects. However, the use of low-abundance cancer biomarkers as molecular triggers to induce efficient drug release for combination therapy still remains a challenge. Herein, we developed a dual microRNA-responsive drug nanocarrier for catalytic release of doxorubicin (Dox) and small interfering RNA (siRNA) in cancerous cells for combined chemotherapy and gene therapy with logic operation. The nanocarrier is constructed by assembling two duplexes of DNA/RNA and Dox molecules onto DNA-functionalized gold nanoparticles. Two microRNA molecules (miRNA-21 and miRNA-10b overexpressed in MDA-MB-231) could alternatively catalyze the disassembly of the nanocarrier through a thermodynamically driven entropy gain process, during which Dox molecules are released, and the two pairs of released DNA/RNA duplex hybridize to generate siRNA (siBcl-2) in situ by strand displacement reactions. Quantum dots are used to track the process in living cells. The AND logic gate-based drug release system allows effective treatment of specific cancer cell types according to miRNA expression patterns. This strategy represents an effective means to overcome multidrug resistance and improve therapeutic effects.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/terapia , Doxorrubicina/farmacología , Terapia Genética , MicroARNs/química , Antibióticos Antineoplásicos/química , Neoplasias de la Mama/diagnóstico por imagen , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Oro/química , Células HEK293 , Humanos , Nanopartículas del Metal/química , MicroARNs/genética , Imagen Óptica , Tamaño de la Partícula , Puntos Cuánticos/química , Propiedades de Superficie , Termodinámica
12.
ACS Sens ; 4(1): 250-256, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30520293

RESUMEN

Molecular circuits capable of implementing Boolean logic in cellular environments have emerged as an important tool for in situ sensing, elucidating, and modulating cell functions. The performance of existing molecular computation devices in living cells is limited because of the low level of biomolecular inputs and moderate signal gain. Herein, we devised a new class of DNA-programmed nanoparticle network with integrated molecular computation and signal amplification functions for logic sensing of dual microRNA (miRNA) molecules in living cells. The nanoparticle network, which is composed of DNA-bridged gold nanoparticles and quantum dots (QDs), could simultaneously interface with two miRNA molecules, amplify the molecular inputs, perform a calculation through AND logic gate, and generate QD photoluminescence (PL) as an output signal. Significant improvement in imaging sensitivity is achieved by integrating the signal amplifier into the molecular computation device. It allows discrimination of specific cancer cell types via intelligent sensing of miRNA patterns in living cells.


Asunto(s)
Computadores Moleculares , ADN/química , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , MicroARNs/análisis , Puntos Cuánticos/química , Línea Celular Tumoral , Fluorescencia , Oro/química , Células HEK293 , Humanos , Lógica , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos
13.
Nanoscale ; 10(35): 16508-16520, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-29938276

RESUMEN

In situ monitoring of the photothermal (PT) effect at the cellular level is of great importance in the photothermal (PT) treatment of cancer. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) complexes (GQC) for PT sensing in solution and in cancer cells in vitro. Specifically, the QD photoluminescence (PL) could be activated at elevated temperature with a wide thermo-responsive range between 45 °C and 70 °C, which fits the temperature threshold for effective cancer cell ablation. The general applicability of GQC for intracellular PT sensing is explored using three types of PT agents (gold nanorods (GNRs), gold nanostars (GNSs), and Prussian blue nanoparticles (PBNPs)) with various PT performances. We show that the intracellular QD PL is gradually activated with increasing near-infrared (NIR) irradiation time, providing a good correlation with the surrounding medium temperature for PT sensing. Moreover, we demonstrate that the GQC sensor could be used for specific photothermal labeling and imaging of cancer cells. The QD PL signal is retained in the cells post-treatment, thereby potentially enabling persistent photothermal labeling of cancer cells for post-treatment cell tracking and imaging-guided therapy evaluation.


Asunto(s)
ADN/química , Oro , Nanopartículas del Metal , Puntos Cuánticos/química , Células HEK293 , Células HeLa , Humanos , Rayos Infrarrojos , Mediciones Luminiscentes , Microscopía Fluorescente , Nanotubos
14.
ACS Appl Mater Interfaces ; 9(39): 33624-33631, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28915002

RESUMEN

The use of cancer-relevant microRNA molecules as endogenous drug release stimuli is promising for personalized cancer treatment yet remains a great challenge because of their low abundance. Herein, we report a new type of microRNA-catalyzed drug release system based on DNA-programmed gold nanoparticle (GNP)-quantum dot (QD) complex. We show that a trace amount of miRNA-21 molecules could specifically catalyze the disassembly of doxorubicin (Dox)-loaded GNP-QDs complex through entropy driven process, during which the Dox-intercalating sites are destructed for drug release. This catalytic reaction could proceed both in fixed cells and live cells with miRNA-21 overexpression. Dox molecules could be efficiently released in the cells and translocate to cell nuclei. QD photoluminescence is simultaneously activated during catalytic disassembly process, thus providing a reliable feedback for microRNA-triggered drug release. The GNP-QDs-Dox complex exhibits much higher drug potency than free Dox molecules, and therefore represents a promising platform for accurate and effective cancer cell treatment.


Asunto(s)
Nanopartículas , Biocatálisis , Línea Celular Tumoral , ADN , Doxorrubicina , Oro , Humanos , MicroARNs , Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA