Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 120, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026279

RESUMEN

BACKGROUND: The contribution of cholinergic degeneration to gait disturbance in Parkinson's disease (PD) is increasingly recognized, yet its relationship with dopaminergic-resistant gait parameters has been poorly investigated. We investigated the association between comprehensive gait parameters and cholinergic nucleus degeneration in PD. METHODS: This cross-sectional study enrolled 84 PD patients and 69 controls. All subjects underwent brain structural magnetic resonance imaging to assess the gray matter density (GMD) and volume (GMV) of the cholinergic nuclei (Ch123/Ch4). Gait parameters under single-task (ST) and dual-task (DT) walking tests were acquired using sensor wearables in PD group. We compared cholinergic nucleus morphology and gait performance between groups and examined their association. RESULTS: PD patients exhibited significantly decreased GMD and GMV of the left Ch4 compared to controls after reaching HY stage > 2. Significant correlations were observed between multiple gait parameters and bilateral Ch123/Ch4. After multiple testing correction, the Ch123/Ch4 degeneration was significantly associated with shorter stride length, lower gait velocity, longer stance phase, smaller ankle toe-off and heel-strike angles under both ST and DT condition. For PD patients with HY stage 1-2, there were no significant degeneration of Ch123/4, and only right side Ch123/Ch4 were corrected with the gait parameters. However, as the disease progressed to HY stage > 2, bilateral Ch123/Ch4 nuclei showed correlations with gait performance, with more extensive significant correlations were observed in the right side. CONCLUSIONS: Our study demonstrated the progressive association between cholinergic nuclei degeneration and gait impairment across different stages of PD, and highlighting the potential lateralization of the cholinergic nuclei's impact on gait impairment. These findings offer insights for the design and implementation of future clinical trials investigating cholinergic treatments as a promising approach to address gait impairments in PD.


Asunto(s)
Trastornos Neurológicos de la Marcha , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Femenino , Anciano , Estudios Transversales , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Neuronas Colinérgicas/patología , Núcleo Basal de Meynert/diagnóstico por imagen
2.
Neural Regen Res ; 19(9): 1973-1980, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227524

RESUMEN

Parkinson's disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins, including α-synuclein, amyloid-ß, and tau, in addition to the impaired elimination of these neurotoxic protein. Atypical parkinsonism, which has the same clinical presentation and neuropathology as Parkinson's disease, expands the disease landscape within the continuum of Parkinson's disease and related disorders. The glymphatic system is a waste clearance system in the brain, which is responsible for eliminating the neurotoxic proteins from the interstitial fluid. Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease, as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage. Therefore, impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration. Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson's disease and related disorders; however, many unanswered questions remain. This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson's disease and related disorders. The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins, including loss of polarization of aquaporin-4 in astrocytic endfeet, sleep and circadian rhythms, neuroinflammation, astrogliosis, and gliosis. This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson's disease and related disorders, and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA