Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7972): 128-136, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468623

RESUMEN

Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.


Asunto(s)
Alelos , Infecciones Asintomáticas , COVID-19 , Antígenos HLA-B , Humanos , COVID-19/genética , COVID-19/inmunología , COVID-19/fisiopatología , COVID-19/virología , Epítopos de Linfocito T/inmunología , Péptidos/inmunología , SARS-CoV-2/inmunología , Antígenos HLA-B/inmunología , Estudios de Cohortes , Linfocitos T/inmunología , Epítopos Inmunodominantes/inmunología , Reacciones Cruzadas/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
2.
Clin Infect Dis ; 75(1): e916-e919, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34864962

RESUMEN

Following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination, people living with human immunodeficiency virus (HIV, PLWH) had lower surrogate virus neutralization test response (P = .03) and a trend toward lower immunoglobulin G (IgG) response (P = .08), particularly among those with lower CD4+ T-cell counts and who received the BNT162b2 vaccine. Study of the impact of supplemental vaccine doses among PLWH is needed.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Estudios de Casos y Controles , VIH , Humanos , Inmunoglobulina G , Pruebas de Neutralización , ARN Mensajero , SARS-CoV-2 , Vacunación
3.
Clin Infect Dis ; 73(9): e3095-e3097, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32927483

RESUMEN

The kinetics of IgG avidity maturation during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was studied. The IgG avidity assay, using a novel label-free immunoassay technology, revealed a strong correlation between IgG avidity and days since symptom onset. Peak readings were significantly higher in severe than mild disease cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Afinidad de Anticuerpos , Humanos , Inmunoglobulina G , Inmunoglobulina M , Cinética , Índice de Severidad de la Enfermedad
4.
J Clin Microbiol ; 59(7): e0019321, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33827900

RESUMEN

Methods designed to measure severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) humoral response include virus neutralization tests to determine antibody neutralization activity. For ease of use and universal applicability, surrogate virus neutralization tests (sVNTs) based on antibody-mediated blockage of molecular interactions have been proposed. A surrogate virus neutralization test was established on a label-free immunoassay platform (LF-sVNT). The LF-sVNT analyzes the binding ability of SARS-CoV-2 spike protein receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2) after neutralizing RBD with antibodies in serum. The LF-sVNT neutralizing antibody titers (50% inhibitory concentration [IC50]) were determined from serum samples (n = 246) from coronavirus disease 2019 (COVID-19) patients (n = 113), as well as the IgG concentrations and the IgG avidity indices. Although there was variability in the kinetics of the IgG concentrations and neutralizing antibody titers between individuals, there was an initial rise, plateau, and then in some cases a gradual decline at later time points after 40 days after symptom onset. The IgG avidity indices, in the same cases, plateaued after an initial rise and did not show a decline. The LF-sVNT can be a valuable tool in research and clinical laboratories for the assessment of the presence of neutralizing antibodies to COVID-19. This study is the first to provide longitudinal neutralizing antibody titers beyond 200 days post-symptom onset. Despite the decline of IgG concentration and neutralizing antibody titer, IgG avidity index increases, reaches a plateau, and then remains constant up to 8 months postinfection. The decline of antibody neutralization activity can be attributed to the reduction in antibody quantity rather than the deterioration of antibody quality, as measured by antibody avidity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Estudios Longitudinales , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus
5.
Clin Chem ; 68(1): 240-248, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34358289

RESUMEN

BACKGROUND: Biomarkers have been widely explored for coronavirus disease 2019 diagnosis. Both viral RNA or antigens (Ag) in the respiratory system and antibodies (Ab) in blood are used to identify active infection, transmission risk, and immune response but have limitations. This study investigated the diagnostic utility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-Ag) in serum. METHODS: We retrospectively studied 208 randomly selected cases with SARS-CoV-2 infection confirmed by viral RNA test in swabs. N-Ag concentrations were measured in remnant serum samples, compared to viral RNA or Ab results, and correlated to electronic health records for clinical value evaluation. RESULTS: Serum N-Ag was detected during active infection as early as day 2 from symptom onset with a diagnostic sensitivity of 81.5%. Within 1 week of symptom onset, the diagnostic sensitivity and specificity reached 90.9% (95% CI, 85.1%-94.6%) and 98.3% (95% CI, 91.1%-99.9%), respectively. Moreover, serum N-Ag concentration closely correlated to disease severity, reflected by highest level of care, medical interventions, chest imaging, and the length of hospital stays. Longitudinal analysis revealed the simultaneous increase of Abs and decline of N-Ag. CONCLUSIONS: Serum N-Ag is a biomarker for SARS-CoV-2 acute infection with high diagnostic sensitivity and specificity compared to viral RNA in the respiratory system. There is a correlation between serum N-Ag concentrations and disease severity and an inverse relationship of N-Ag and Abs. The diagnostic value of serum N-Ag, as well as technical and practical advantages it could offer, may meet unsatisfied diagnostic and prognostic needs during the pandemic.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19 , Proteínas de la Nucleocápside de Coronavirus/sangre , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Humanos , Proteínas de la Nucleocápside , Fosfoproteínas/sangre , ARN Viral , Estudios Retrospectivos , SARS-CoV-2 , Sensibilidad y Especificidad
6.
Clin Chem ; 65(9): 1171-1179, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31296552

RESUMEN

BACKGROUND: Cannabis use results in impaired driving and an increased risk of motor vehicle crashes. Cannabinoid concentrations in blood and other matrices can remain high long after use, prohibiting the differentiation between acute and chronic exposure. Exhaled breath has been proposed as an alternative matrix in which concentrations may more closely correspond to the window of impairment; however, efficient capture and analytically sensitive detection methods are required for measurement. METHODS: Timed blood and breath samples were collected from 20 volunteers before and after controlled administration of smoked cannabis. Cannabinoid concentrations were measured using LC-MS/MS to determine release kinetics and correlation between the 2 matrices. RESULTS: Δ9-Tetrahydrocannabinol (THC) was detected in exhaled breath for all individuals at baseline through 3 h after cannabis use. THC concentrations in breath were highest at the 15-min timepoint (median = 17.8 pg/L) and declined to <5% of this concentration in all participants 3 h after smoking. The decay curve kinetics observed for blood and breath were highly correlated within individuals and across the population. CONCLUSIONS: THC can be reliably detected throughout the presumed 3-h impairment window following controlled administration of smoked cannabis. The findings support breath THC concentrations as representing a physiological process and are correlated to blood concentrations, albeit with a shorter window of detection.


Asunto(s)
Dronabinol/sangre , Fumar Marihuana/sangre , Adulto , Pruebas Respiratorias , Cromatografía Liquida , Espiración , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Detección de Abuso de Sustancias/métodos , Espectrometría de Masas en Tándem , Adulto Joven
7.
J Psychoactive Drugs ; 55(3): 354-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35880962

RESUMEN

Ketamine is a general anesthetic with over 50 years of safe administration that is in increasing use for psychiatric indications. This is evidenced by the recent FDA approval of intranasal esketamine (the S-enantiomer) for the treatment of depression. With respect to ketamine and lactation, incredibly there are no available data on the secretion of ketamine or its metabolites in human breast milk. This information is essential to guide the use of ketamine in breastfeeding women who suffer with postpartum emotional disorders, ongoing depression, PTSD, and more. To address this unmet need, we conducted a pharmacokinetic analysis of the presence of ketamine and several of its major metabolites (norketamine, dehydronorketamine, and hydroxynorketamine isomers) in four women receiving two different intramuscular doses of ketamine - 0.5 mg/kg and 1.0 mg/kg. Our results demonstrate low and rapidly declining levels of ketamine and metabolites in breast milk during the 12-hour post-dosing period. The mean relative infant dose (RID) obtained from AUC estimates for the 0.5 and 1.0 mg/kg doses were 0.650% and 0.766%, respectively. This provides the foundation for studying the use of ketamine during the post-partum period.

8.
Curr Drug Metab ; 24(7): 536-552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37076460

RESUMEN

Therapeutic antisense oligonucleotides (ASOs) represent a diverse array of chemically modified singlestranded deoxyribonucleotides that work complementarily to affect their mRNA targets. They vastly differ from conventional small molecules. These newly developed therapeutic ASOs possess unique absorption, distribution, metabolism, and excretion (ADME) processes that ultimately determine their pharmacokinetic, efficacy and safety profiles. The ADME properties of ASOs and associated key factors have not been fully investigated. Therefore, thorough characterization and in-depth study of their ADME properties are critical to support drug discovery and development processes for safe and effective therapeutic ASOs. In this review, we discussed the main factors affecting the ADME characteristics of these novels and evolving therapies. The major changes to ASO backbone and sugar chemistry, conjugation approaches, sites and routes of administration, etc., are the principal determinants of ADME and PK profiles that consequentially impact their efficacy and safety profiles. In addition, species difference and DDI considerations are important in understanding ADME profile and PK translatability but are less studied for ASOs. We, therefore, have summarized these aspects based on current knowledge and provided discussions in this review. We also give an overview of the current tools, technologies, and approaches available to investigate key factors that influence the ADME of ASO drugs and provide future perspectives and knowledge gap analysis.

9.
J Med Microbiol ; 72(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36748419

RESUMEN

Introduction. One correlate of immunity for coronavirus disease 2019 (COVID-19) is the laboratory detection of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. These tests are widely implemented for clinical, public health, or research uses.Hypothesis/Gap Statement. Antibody responses by all classes of immunoglobulins may form from infection and vaccination, but few studies have performed direct head-to-head comparisons between these groups.Aim. The objective of this study was to evaluate the serological responses in natural SARS-CoV-2 infection and mRNA-based vaccination across multiple immunoglobulin classes and a surrogate neutralizing antibody (NAb) assay.Methodology. A suite of enzyme-linked immunosorbent assays (ELISAs) was used to qualitatively assess IgA, IgM and IgG positivity and neutralizing per cent signal inhibition of sera from RT-PCR-confirmed SARS-CoV-2-infected patients, COVID-19-immunized individuals ≥2 weeks after a second dose of mRNA vaccine and a set of pre-pandemic negative samples.Results. For confirmed SARS-CoV-2 infections, seroconversion of IgA, IgM, IgG and NAb increased by week after symptom onset, with positivity reaching 100 % after the third week for every immunoglobulin class. Vaccinated individuals demonstrated 100 % IgG positivity and high per cent signal inhibition by NAb, comparable to natural infection. High specificity, ranging from 96.7-98.9 %, was observed for each assay from a set of pre-pandemic COVID-19-negative samples.Conclusion. We make use of a comprehensive and readily adoptable suite of serological assays to provide data on the humoral immune response to SARS-CoV-2 infection and vaccination. We found that infection and vaccination both elicit robust IgG, IgM, IgA and neutralizing antibody responses.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Humanos , Anticuerpos Neutralizantes , COVID-19/diagnóstico , COVID-19/prevención & control , SARS-CoV-2 , ARN Mensajero , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Anticuerpos Antivirales
10.
J Mass Spectrom Adv Clin Lab ; 23: 50-57, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35036987

RESUMEN

INTRODUCTION: Differential mobility separation (DMS) is an analytical technique used for rapid separation of ions and isomers based on gas phase mobility prior to entering a mass spectrometer for analysis. The entire DMS process is accomplished in fewer than 20 ms and can be used as a rapid alternative to chromatographic separation. OBJECTIVE: The primary objective was to evaluate the utility of DMS-tandem mass spectrometry (DMS-MS/MS) as a replacement for immunoassay-based clinical toxicology testing. METHODS: A sensitive DMS-MS/MS method was developed and validated for simultaneous identification of 33 drugs and metabolites in human urine samples. After DMS optimization, the method was validated and used to screen 56 clinical urine samples. These results were compared to results obtained by immunoassay. RESULTS: The DMS-MS/MS method achieved limits of detection ranging from 5 to 100 ng/mL. Moreover, the total analysis time was 2 min per sample. For the method performance evaluation, DMS-MS/MS results were compared with previously obtained urine toxicology immunoassay results. DMS-MS/MS showed higher sensitivity and identified 20% more drugs in urine, which were confirmed by LC-MS/MS. CONCLUSION: The DMS-MS/MS as applied in our lab demonstrated the capability for rapid drug screening and provided better analytical performance than immunoassay.

11.
J Anal Toxicol ; 46(3): 303-321, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33506876

RESUMEN

Many natural products have biological effects on humans and animals. Poisoning caused by natural products is common in clinical toxicology cases. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) has recently emerged as a powerful analytical tool for large-scale target screening, and the application of LC-HRMS can be expanded to evaluate potential natural product poisoning in clinical cases. We report the construction of an LC-HRMS spectral library of 95 natural products commonly implicated in poisoning, and an LC-HRMS assay was validated for definitive detection of natural products in urine and serum samples. For each compound, the limit of detection was determined in the analytical range of 1.0-1,000 ng/mL for urine samples and 0.50-500 ng/mL for serum samples. The mean (SD) values of matrix effects for urine samples and that for serum samples were both -21% (22%), and the mean (SD) value of recovery for serum samples was 89% (26%). The LC-HRMS assay was successfully applied to identify natural products in clinical cases. The spectral library parameters of each compound are provided in the supplementary material to aid other laboratories in identification of unknown natural toxins and development of similar methods on different mass spectrometry platforms.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Animales , Bioensayo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos
12.
J Mass Spectrom Adv Clin Lab ; 26: 1-6, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36065325

RESUMEN

Introduction: The use of illicitly manufactured synthetic opioids, specifically fentanyl and its analogs, has escalated exponentially in the United States over the last decade. Due to the targeted nature of drug detection methods in clinical laboratories and the ever-evolving list of synthetic opioids of concern, alternative analytical approaches are needed. Methods: Using the fentanyl analog screening (FAS) kit produced by the Centers for Disease Control and Prevention (CDC), we developed a liquid chromatography-high resolution mass spectrometry (LC-HRMS) synthetic opioid spectral library and data acquisition method using information dependent acquisition of product ion spectra. Chromatographic retention times, limits of detection and matrix effects, in urine and serum, for the synthetic opioids in the FAS kit (n = 150) were established. All urine and serum specimens sent to a clinical toxicology laboratory for comprehensive drug testing in 2019 (n = 856) and 2021 (n = 878) were analyzed with the FAS LC-HRMS library to determine the prevalence of fentanyl analogs and other synthetic opioids, retrospectively (2019) and prospectively (2021). Results: The limit of detection (LOD) of each opioid ranged from 1 to 10 ng/mL (median, 2.5 ng/mL) in urine and 0.25-2.5 ng/mL (median, 0.5 ng/mL) in serum. Matrix effects ranged from -79 % to 86 % (median, -37 %) for urine, following dilution and direct analysis, and -80 % to 400 % (median, 0 %) for serum, following protein precipitation. The prevalence of fentanyl/fentanyl analogs in serum samples increased slightly from 2019 to 2021 while it remained the same in urine. There were only 2 samples identified that contained a fentanyl analog without the co-occurrence of fentanyl or fentanyl metabolites. Analysis of the established MS/MS spectral library revealed characteristic fragmentation patterns in most fentanyl analogs, which can be used for structure elucidation and drug identification of future analogs. Conclusions: The LC-HRMS method was capable of detecting fentanyl analogs in routine samples sent for comprehensive drug testing. The method can be adapted to accommodate testing needs for the evolving opioid epidemic.

13.
medRxiv ; 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34031661

RESUMEN

Despite some inconsistent reporting of symptoms, studies have demonstrated that at least 20% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain asymptomatic. Although most global efforts have focused on understanding factors underlying severe illness in COVID-19 (coronavirus disease of 2019), the examination of asymptomatic infection provides a unique opportunity to consider early disease and immunologic features promoting rapid viral clearance. Owing to its critical role in the immune response, we postulated that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection. We enrolled 29,947 individuals registered in the National Marrow Donor Program for whom high-resolution HLA genotyping data were available in the UCSF Citizen Science smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n=1428) was comprised of unvaccinated, self-identified subjects who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci (HLA-A, -B, -C, -DRB1, -DQB1) with disease course and identified a strong association of HLA-B*15:01 with asymptomatic infection, and reproduced this association in two independent cohorts. Suggesting that this genetic association is due to pre-existing T-cell immunity, we show that T cells from pre-pandemic individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF, and 100% of the reactive cells displayed memory phenotype. Finally, we characterize the protein structure of HLA-B*15:01-peptide complexes, demonstrating that the NQKLIANQF peptide from SARS-CoV-2, and the highly homologous NQKLIANAF from seasonal coronaviruses OC43-CoV and HKU1-CoV, share similar ability to be stabilized and presented by HLA-B*15:01, providing the molecular basis for T-cell cross-reactivity and HLA-B*15:01-mediated pre-existing immunity.

14.
J Appl Lab Med ; 6(3): 592-605, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33382901

RESUMEN

BACKGROUND: As modulators of nitric oxide generation, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) may play important roles in sepsis. Current data on dimethylarginines are conflicting, and direct comparison data with other biomarkers are limited. METHODS: Fifty-five patients were included in the final analysis and were divided into 4 groups: infection without sepsis, sepsis, severe sepsis, and septic shock. The first available samples on hospital admission were analyzed for ADMA, SDMA, procalcitonin (PCT), C-reactive protein, heparin binding protein (HBP), zonulin, soluble CD25 (sCD25), and soluble CD163 (sCD163). White blood cell (WBC) counts and lactate results were obtained from the medical record. RESULTS: There were no statistically significant differences in ADMA and SDMA concentrations among the 4 groups; however, PCT, WBC, HBP, and sCD25 showed statistically significant differences. Lactate only trended toward statistical significance, likely because of limited availability in the medical record. Differences between survivors of sepsis and nonsurvivors at 30 days were highly statistically significant for ADMA and SDMA. Areas under the curve (AUCs) for ROC analysis were 0.88 and 0.95, respectively. There was also a statistically significant difference between survivors of sepsis and nonsurvivors for HBP, lactate, sCD25, and sCD163; however, AUCs for ROC curves were not statistically significantly different from 0.5. CONCLUSIONS: Analysis of biomarkers other than dimethylarginines were in general agreement with expectations from the literature. ADMA and SDMA may not be specific markers for diagnosis of sepsis; however, they may be useful in short-term mortality risk assessment.


Asunto(s)
Sepsis , Arginina/análogos & derivados , Biomarcadores , Humanos , Sepsis/diagnóstico
15.
Lancet HIV ; 8(6): e334-e341, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33933189

RESUMEN

BACKGROUND: Most cohorts show similar or lower COVID-19 incidence among people living with HIV compared with the general population. However, incidence might be affected by lower testing rates among vulnerable populations. We aimed to compare SARS-CoV-2 IgG seroprevalence, disease severity, and neutralising antibody activity after infection among people with and without HIV receiving care in a county hospital system over a 3-month period. METHODS: In this matched case-control observational study, remnant serum samples were collected between Aug 1 and Oct 31, 2020, from all people living with HIV who underwent routine outpatient laboratory testing in a municipal health-care system (San Francisco General Hospital, CA, USA). Samples from people living with HIV were date of collection-matched (same day) and age-matched (±5 years) to samples from randomly selected adults (aged 18 years or older) without HIV receiving care for chronic conditions at the same hospital. We compared seroprevalence by HIV status via mixed-effects logistic regression models, accounting for the matched structure of the data (random effects for the matched group), adjusting for age, sex, race or ethnicity, and clinical factors (ie, history of cardiovascular or pulmonary disease, and type 2 diabetes). Severe COVID-19 was assessed in participants with past SARS-CoV-2 (IgG or PCR) infection by chart review and compared with multivariable mixed-effects logistic regression, adjusting for age and sex. SARS-CoV-2 IgG, neutralising antibody titres, and antibody avidity were measured in serum of participants with previous positive PCR tests and compared with multivariable mixed-effects models, adjusting for age, sex, and time since PCR-confirmed SARS-CoV-2 infection. FINDINGS: 1138 samples from 955 people living with HIV and 1118 samples from 1062 people without HIV were tested. SARS-CoV-2 IgG seroprevalence was 3·7% (95% CI 2·4 to 5·0) among people with HIV compared with 7·4% (5·7 to 9·2) among people without HIV (adjusted odds ratio 0·50, 95% CI 0·30 to 0·83). Among 31 people with HIV and 70 people without HIV who had evidence of past infection, the odds of severe COVID-19 were 5·52 (95% CI 1·01 to 64·48) times higher among people living with HIV. Adjusting for time since PCR-confirmed infection, SARS-CoV-2 IgG concentrations were lower (percentage change -53%, 95% CI -4 to -76), pseudovirus neutralising antibody titres were lower (-67%, -25 to -86), and avidity was similar (7%, -73 to 87) among people living with HIV compared with those without HIV. INTERPRETATION: Although fewer infections were detected by SARS-CoV-2 IgG testing among people living with HIV than among those without HIV, people with HIV had more cases of severe COVID-19. Among people living with HIV with past SARS-CoV-2 infection, lower IgG concentrations and pseudovirus neutralising antibody titres might reflect a diminished serological response to infection, and the similar avidity could be driven by similar time since infection. FUNDING: US National Institute of Allergy and Infectious Diseases, US National Institutes of Health.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Infecciones por VIH/inmunología , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , Anciano , COVID-19/sangre , COVID-19/epidemiología , COVID-19/virología , Estudios de Casos y Controles , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , SARS-CoV-2/patogenicidad , San Francisco/epidemiología , Estudios Seroepidemiológicos , Índice de Severidad de la Enfermedad
16.
medRxiv ; 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33532792

RESUMEN

Although T cells are likely players in SARS-CoV-2 immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe COVID-19. We analyzed T cells from longitudinal specimens of 34 COVID-19 patients with severities ranging from mild (outpatient) to critical culminating in death. Relative to patients that succumbed, individuals that recovered from severe COVID-19 harbored elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 displayed elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of severe COVID-19 patients, these results support a model whereby lung-homing T cells activated through bystander effects contribute to immunopathology, while a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.

17.
Open Forum Infect Dis ; 8(8): ofab393, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34395717

RESUMEN

We report a patient with connective tissue disease who developed modest severe acute respiratory syndrome coronavirus 2 receptor binding domain-specific antibody levels and a lack of neutralization capacity, despite having received 3 mRNA coronavirus disease 2019 vaccines and holding anti-B-cell therapy for >7 months before vaccination. The patient developed virus-specific T-cell responses.

18.
Cell Rep ; 36(3): 109414, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34260965

RESUMEN

Although T cells are likely players in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe coronavirus disease 2019 (COVID-19). We analyze T cells from 34 individuals with COVID-19 with severity ranging from mild (outpatient) to critical, culminating in death. Relative to individuals who succumbed, individuals who recovered from severe COVID-19 harbor elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 cases display elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells, as assessed by longitudinal sampling. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of individuals with severe COVID-19, these results support a model where lung-homing T cells activated through bystander effects contribute to immunopathology, whereas a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.

19.
Nat Commun ; 12(1): 3566, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117227

RESUMEN

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic health record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.


Asunto(s)
COVID-19/epidemiología , Registros Electrónicos de Salud/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2/aislamiento & purificación , San Francisco/epidemiología , Estudios Seroepidemiológicos , Adulto Joven
20.
Res Sq ; 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33564754

RESUMEN

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic medical record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA