Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioelectromagnetics ; 32(3): 169-78, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21365661

RESUMEN

The aim of this study was to investigate whether single or combined radio frequency (RF) radiation exposure has effects on the cell cycle and its regulatory proteins. Exposure of MCF7 cells to either single (837 MHz) or combined (837 and 1950 MHz) RF radiation was conducted at specific absorption rate values of 4 W/kg for 1 h. During the exposure period, the chamber was made isothermal by circulating water through the cavity. After RF radiation exposure, DNA synthesis rate and cell cycle distribution were assessed. The levels of cell cycle regulatory proteins, p53, p21, cyclins, and cyclin-dependent kinases were also examined. The positive control group was exposed to 0.5 and 4 Gy doses of ionizing radiation (IR) and showed changes in DNA synthesis and cell cycle distribution. The levels of p53, p21, cyclin A, cyclin B1, and cyclin D1 were also affected by IR exposure. In contrast to the IR-exposed group, neither the single RF radiation- nor the combined RF radiation-exposed group elicited alterations in DNA synthesis, cell cycle distribution, and levels of cell cycle regulatory proteins. These results indicate that neither single nor combined RF radiation affect cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efectos de la radiación , Ondas de Radio , Bromodesoxiuridina/metabolismo , Línea Celular Tumoral , ADN/biosíntesis , Humanos
2.
ACS Appl Mater Interfaces ; 9(8): 7029-7035, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145110

RESUMEN

Reliable integration of organometallic halide perovskite in photovoltaic devices is critically limited by its low stability in humid environments. Furthermore, additives to increase the mobility in the hole transport material (HTM) have deliquescence and hygroscopic properties, which attract water molecules and result in accelerated degradation of the perovskite devices. In this study, a double cantilever beam (DCB) test is used to investigate the effects of additives in the HTM layer on the perovskite layer through neatly delaminating the interface between the perovskite and HTM layers. Using the DCB test, the bottom surface of the HTM layers is directly observed, and it is found that the additives are accumulated at the bottom along the thickness (i.e., through-plane direction) of the films. It is also found that the additives significantly decrease the adhesion at the interface between the perovskite and HTM layers by more than 60% through hardening the HTM films. Finally, the adhesion-based degradation mechanism of perovskite devices according to the existence of additives is proposed for humid environments.

3.
Chem Sci ; 7(8): 5517-5522, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30034692

RESUMEN

A series of hole-transporting materials (HTMs) based on [2,2]paracyclophane and triphenyl-amine (TPA) was synthesized. We studied the effect of the chemical structure of the HTM on the photovoltaic performance of perovskite solar cells by varying the number of TPA charge transporting components in the HTM. Tetra-TPA, in which four TPAs are incorporated into the [2,2]paracyclophane core, exhibited better hole transport properties than di-TPA and tri-TPA, which contain two and three TPAs, respectively. In particular, incorporation of the TPA group with a multi-armed structure effectively enhanced the conductivity of the HTM layer in the out-of-plane direction in the solar cell device. Due to the improved charge transport and appropriate molecular energy levels of tetra-TPA, the perovskite solar cell based on the tetra-TPA HTM achieved higher Jsc and FF values than the devices based on di-TPA and tri-TPA HTMs, with a high solar cell efficiency (17.9%).

4.
Chem Sci ; 7(11): 6649-6661, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28567255

RESUMEN

We prepared a series of small molecules based on 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) with different fluorine substitution patterns (0F-4F). Depending on symmetricity and numbers of fluorine atoms incorporated in the benzo[c][1,2,5]thiadiazole unit, they show very different optical and morphological properties in a film. 2F and 4F, which featured symmetric and even-numbered fluorine substitution patterns, display improved molecular packing structures and higher crystalline properties in a film compared with 1F and 3F and thus, 2F achieved the highest OTFT mobility, which is followed by 4F. In the bulk heterojunction solar cell fabricated with PC71BM, 2F achieves the highest photovoltaic performance with an 8.14% efficiency and 0F shows the lowest efficiency of 1.28%. Moreover, the planar-type perovskite solar cell (PSC) prepared with 2F as a dopant-free hole transport material shows a high power conversion efficiency of 14.5% due to its high charge transporting properties, which were significantly improved compared with the corresponding PSC device obtained from 0F (8.5%). From the studies, it is demonstrated that low variation in the local dipole moment and the narrow distribution of 2F conformers make intermolecular interactions favorable, which may effectively drive crystal formations in the solid state and thus, higher charge transport properties compared with 1F and 3F.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA