Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 165(5): 660-681, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648143

RESUMEN

Schwann cells (SCs) are known to produce myelin for saltatory nerve conduction in the peripheral nervous system (PNS). Schwann cell differentiation and myelination processes are controlled by several transcription factors including Sox10, Oct6/Pou3f1, and Krox20/Egr2. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan receptor that plays a role in the development and differentiation. However, the role of COUP-TFII in the transcriptional regulatory network of SC differentiation has not been fully identified yet. Thus, the objective of this study was to investigate the role and molecular hierarchy of COUP-TFII during cAMP-induced SC differentiation. Our results showed that dibutyryl-cAMP (db-cAMP) increased expression levels of COUP-TFII along with the expressions of Oct6, Krox20, and myelin-related genes known to be related to SC differentiation. Our mechanistic studies showed that COUP-TFII acted downstream of Hsp90/ErbB2/Gab1/ERK-AKT pathway during db-cAMP-induced SC differentiation. In addition, we found that COUP-TFII induced Krox20 expression by directly binding to Krox20-MSE8 as revealed by chromatin immunoprecipitation assay and promoter activity assay. In line with this, the expression of COUP-TFII was increased before up-regulation of Oct6, Krox20, and myelin-related genes in the sciatic nerves during early postnatal myelination period. Finally, COUP-TFII knockdown by COUP-TFII siRNA or via AAV-COUP-TFII shRNA in SCs inhibited db-cAMP-induced SC differentiation and in vitro myelination of sensory axons, respectively. Taken together, these findings indicate that COUP-TFII might be involved in postnatal myelination through induction of Krox20 in SCs. Our results present a new insight into the transcriptional regulatory mechanism in SC differentiation and myelination.


Asunto(s)
Factor de Transcripción COUP II , Proteína 2 de la Respuesta de Crecimiento Precoz , Células de Schwann , Animales , Ratas , Diferenciación Celular , Células Cultivadas , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Vaina de Mielina/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo
2.
Mol Cell ; 60(4): 685-96, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26549682

RESUMEN

Alterations in mitophagy have been increasingly linked to aging and age-related diseases. There are, however, no convenient methods to analyze mitophagy in vivo. Here, we describe a transgenic mouse model in which we expressed a mitochondrial-targeted form of the fluorescent reporter Keima (mt-Keima). Keima is a coral-derived protein that exhibits both pH-dependent excitation and resistance to lysosomal proteases. Comparison of a wide range of primary cells and tissues generated from the mt-Keima mouse revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima mice to analyze how mitophagy is altered by conditions including diet, oxygen availability, Huntingtin transgene expression, the absence of macroautophagy (ATG5 or ATG7 expression), an increase in mitochondrial mutational load, the presence of metastatic tumors, and normal aging. The ability to assess mitophagy under a host of varying environmental and genetic perturbations suggests that the mt-Keima mouse should be a valuable resource.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Ratones Transgénicos , Mitofagia , Envejecimiento/fisiología , Animales , Proteínas Luminiscentes/genética , Ratones , Especificidad de Órganos , Oxígeno/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003731

RESUMEN

Palmatine, a natural alkaloid found in various plants, has been reported to have diverse pharmacological and biological effects, including anti-inflammatory, antioxidant, and cardiovascular effects. However, the role of palmatine in mitophagy, a fundamental process crucial for maintaining mitochondrial function, remains elusive. In this study, we found that palmatine efficiently induces mitophagy in various human cell lines. Palmatine specifically induces mitophagy and subsequently stimulates mitochondrial biogenesis. Palmatine did not interfere with mitochondrial function, similar to CCCP, suggesting that palmatine is not toxic to mitochondria. Importantly, palmatine treatment alleviated mitochondrial dysfunction in PINK1-knockout MEFs. Moreover, the administration of palmatine resulted in significant improvements in cognitive function and restored mitochondrial function in an Alzheimer's disease mouse model. This study identifies palmatine as a novel inducer of selective mitophagy. Our results suggest that palmatine-mediated mitophagy induction could be a potential strategy for Alzheimer's disease treatment and that natural alkaloids are potential sources of mitophagy inducers.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Ratones , Animales , Humanos , Mitofagia , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Mitocondrias/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203389

RESUMEN

Mitophagy stimulation has been shown to have a therapeutic effect on various neurodegenerative diseases. However, nontoxic mitophagy inducers are still very limited. In this study, we found that the natural alkaloid berberine exhibited mitophagy stimulation activity in various human cells. Berberine did not interfere with mitochondrial function, unlike the well-known mitophagy inducer carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and subsequently induced mitochondrial biogenesis. Berberine treatment induced the activation of adenosine monophosphate-activated protein kinase (AMPK), and the AMPK inhibitor compound C abolished berberine-induced mitophagy, suggesting that AMPK activation is essential for berberine-induced mitophagy. Notably, berberine treatment reversed mitochondrial dysfunction in PINK1 knockout mouse embryonic fibroblasts. Our results suggest that berberine is a mitophagy-specific inducer and can be used as a therapeutic treatment for neurodegenerative diseases, including Parkinson's disease, and that natural alkaloids are potential sources of mitophagy inducers.


Asunto(s)
Berberina , Enfermedades Mitocondriales , Enfermedad de Parkinson , Animales , Humanos , Ratones , Ratones Noqueados , Berberina/farmacología , Proteínas Quinasas Activadas por AMP , Mitofagia , Fibroblastos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología
5.
FASEB J ; 35(2): e21319, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33433933

RESUMEN

The tumor suppressor p53 is known as a critical mediator of many cellular processes, including cellular senescence, but its role in mitochondrial dynamics is not fully understood. We have previously shown that p53 regulates mitochondrial dynamics via the PKA-Drp1 pathway to induce cellular senescence. In this study, to further understand the role of p53-dependent regulation of mitochondrial dynamics, the effect of p53 expression on mitochondrial morphology was examined in various cancer cell lines and normal human cells. We found that p53 induced remarkable mitochondrial elongation and cellular senescence in various cancer cells regardless of their p53 status. p53 also induced mitochondrial elongation in various human primary normal cells, suggesting that p53-mediated mitochondrial elongation is a general phenomenon. Moreover, we found that p53 plays an essential role in mitochondrial elongation in H-Ras-induced cellular senescence and in the replicative senescence of normal human cells. Treatment with the MDM-2 antagonist Nutlin-3a also induced mitochondrial elongation through the PKA-Drp1 pathway in IMR90 normal human cells. Furthermore, the inhibition of PKA activity in late-passage normal cells significantly reduced both mitochondrial elongation and cellular senescence, suggesting that the p53-PKA pathway is essential for maintaining the senescence phenotype in normal cells. Together, these results further confirm the direct regulation of mitochondrial dynamics by p53 and the important role of p53-mediated mitochondrial elongation in cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , Mitocondrias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Senescencia Celular/genética , Humanos , Imidazoles/metabolismo , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/genética , Dinámicas Mitocondriales/fisiología , Piperazinas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
FASEB J ; 34(2): 2451-2464, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908078

RESUMEN

Cellular senescence acts as an important barrier to tumorigenesis by eliminating precancerous cells. Previous studies have shown an essential role of the tumor suppressor p53 in cellular senescence, but how p53 induces cellular senescence is not fully understood. We found that p53 promoted the formation of highly interconnected and elongated mitochondria prior to the onset of cellular senescence. The inhibition of mitochondrial elongation upon p53 expression suppressed cellular senescence, suggesting that mitochondrial elongation is required for the induction of p53-dependent senescence. p53-induced mitochondrial elongation resulted in mitochondrial dysfunction and subsequent increases in intracellular reactive oxygen species (ROS) levels, an important mediator of cellular senescence. Mechanistically, the inhibitory phosphorylation of Drp1 Ser637 increased upon p53 expression, suppressing the translocation of Drp1 into mitochondria. The transcriptional function of p53 was crucial for controlling the inhibitory phosphorylation of Drp1, whereas p21 was nonessential. Protein kinase A (PKA) activity was responsible for p53-mediated Drp1 Ser637 phosphorylation and mitochondrial dysfunction. Taken together, these results suggest that p53 regulates mitochondrial dynamics through the PKA-Drp1 pathway to induce cellular senescence.


Asunto(s)
Senescencia Celular , Dinaminas/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Dinaminas/genética , Mitocondrias/genética , Mitocondrias/patología , Fosforilación , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética
7.
FASEB J ; 33(9): 9742-9751, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31120803

RESUMEN

Mitophagy has been implicated in mitochondrial quality control and in various human diseases. However, the study of in vivo mitophagy remains limited. We previously explored in vivo mitophagy using a transgenic mouse expressing the mitochondria-targeted fluorescent protein Keima (mt-Keima). Here, we generated mt-Keima Drosophila to extend our efforts to study mitophagy in vivo. A series of experiments confirmed that mitophagy can be faithfully and quantitatively measured in mt-Keima Drosophila. We also showed that alterations in mitophagy upon environmental and genetic perturbation can be measured in mt-Keima Drosophila. Analysis of different tissues revealed a variation in basal mitophagy levels in Drosophila tissues. In addition, we found a significant increase in mitophagy levels during Drosophila embryogenesis. Importantly, loss-of-function genetic analysis demonstrated that the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)-Parkin pathway is essential for the induction of mitophagy in vivo in response to hypoxic exposure and rotenone treatment. These studies showed that the mt-Keima Drosophila system is a useful tool for understanding the role and molecular mechanism of mitophagy in vivo. In addition, we demonstrated the essential role of the PINK1-Parkin pathway in mitophagy induction in response to mitochondrial dysfunction.-Kim, Y. Y., Um, J.-H., Yoon, J.-H., Kim, H., Lee, D.-Y., Lee, Y. J., Jee, H. J., Kim, Y. M., Jang, J. S., Jang, Y.-G., Chung, J., Park, H. T., Finkel, T., Koh, H., Yun, J. Assessment of mitophagy in mt-Keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitofagia/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Genotipo , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética
8.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414166

RESUMEN

The aim of this study was to examine whether rubrofusarin, an active ingredient of the Cassia species, has an antidepressive effect in chronic restraint stress (CRS) mouse model. Although acute treatment using rubrofusarin failed, chronic treatment using rubrofusarin ameliorated CRS-induced depressive symptoms. Rubrofusarin treatment significantly reduced the number of Fluoro-Jade B-positive cells and caspase-3 activation within the hippocampus of CRS-treated mice. Moreover, rubrofusarin treatment significantly increased the number of newborn neurons in the hippocampus of CRS-treated mice. CRS induced activation of glycogen synthase kinase-3ß and regulated development and DNA damage responses, and reductions in the extracellular-signal-regulated kinase pathway activity were also reversed by rubrofusarin treatment. Microglial activation and inflammasome markers, including nod-like receptor family pyrin domain containing 3 and adaptor protein apoptosis-associated speck-like protein containing CARD, which were induced by CRS, were ameliorated by rubrofusarin. Synaptic plasticity dysfunction within the hippocampus was also rescued by rubrofusarin treatment. Within in vitro experiments, rubrofusarin blocked corticosterone-induced long-term potentiation impairments. These were blocked by LY294002, which is an Akt inhibitor. Finally, we found that the antidepressant effects of rubrofusarin were blocked by an intracerebroventricular injection of LY294002. These results suggest that rubrofusarin ameliorated CRS-induced depressive symptoms through PI3K/Akt signaling.


Asunto(s)
Depresión/tratamiento farmacológico , Neuronas/efectos de los fármacos , Pironas/farmacología , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Depresión/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Restricción Física/psicología , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/patología
9.
Acta Biochim Biophys Sin (Shanghai) ; 50(2): 209-215, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329364

RESUMEN

Dynamin-related protein 1 (Drp1), a dynamin-related GTPase, is a key regulator of mitochondrial fission. Although recent studies have shown that Drp1 plays important roles in various important cellular processes, such as maintaining proper mitochondrial function, apoptosis and necrosis, the potential involvement of Drp1 in cancer development has not been fully addressed. To explore the role of Drp1 in cancer, we examined Drp1 levels in various human cancer tissues. Tissue array analysis showed that the level of Drp1 was decreased significantly in malignant colon and lung cancer tissues, whereas no change in Drp1 was observed in breast and prostate tumors. Pairwise comparisons of cancer tissue and adjacent normal tissue from colon and lung cancer patients further confirmed decreases in Drp1 expression of 75% in colon cancer patients and 78% in lung cancer patients. Moreover, Drp1 levels were decreased further with advanced grade in both colon and lung cancers, suggesting that loss of Drp1 is associated with the progression of human lung and colon cancer. Consistent with this observation, knockdown of Drp1 increased cellular migration activity in human lung cancer cells and tumor formation in a xenograft tumor model. Taken together, these results suggest that the loss of Drp1 expression could contribute to the development of human lung and colon cancers.


Asunto(s)
Neoplasias del Colon/metabolismo , Regulación hacia Abajo , GTP Fosfohidrolasas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Dinaminas , Femenino , GTP Fosfohidrolasas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/genética , Interferencia de ARN , Análisis de Matrices Tisulares , Trasplante Heterólogo
10.
Acta Biochim Biophys Sin (Shanghai) ; 49(6): 496-502, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430840

RESUMEN

Mediator complex subunit 1 (Med1)/Thyroid hormone receptor-associated protein 220 (TRAP220), an essential component of thyroid hormone receptor-associated proteins (TRAP)/mediator, plays important roles in hormone responses and tumorigenesis. However, the role of Med1 in the DNA damage response has not been studied. In this study, we found that DNA damage, resulted from γ-irradiation, ultraviolet (UV)-irradiation, or hydroxyurea, induced phosphorylation of Med1 in vivo. Phosphorylation of Med1 was abrogated by either caffeine or wortmannin treatment, suggesting that Med1 is phosphorylated through the DNA damage checkpoint pathway. A checkpoint kinase 1 (Chk1)/checkpoint kinase 2 (Chk2) consensus phosphorylation motif was identified at Serine 671 of Med1 and Ser671 motif was primarily phosphorylated by Chk2 in vitro. Moreover, the in vivo phosphorylation of Med1 was abrogated by a Chk2 inhibitor, and physical interaction between Chk2 and Med1 was observed, confirming that Chk2 is responsible for Med1 phosphorylation upon DNA damage. These results suggest that Med1 is a novel target for the DNA damage checkpoint pathway and may participate in the DNA damage response. Consistent with this notion, knockdown of Med1 expression caused a significant increase in cellular sensitivity to UV irradiation. Moreover, microarray analysis revealed that the UV-induced activation of the transcription of important regulators of cell cycle control and DNA repair, including p21, Gadd45, Rad50, DnaJ, and RecQL, was impaired upon Med1 knockdown. Taken together, our data suggest that Med1 is a novel target for Chk2-mediated phosphorylation and may play a role in cellular DNA damage responses by mediating proper induction of gene transcription upon DNA damage.


Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Daño del ADN , Subunidad 1 del Complejo Mediador/metabolismo , Androstadienos/farmacología , Cafeína/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/antagonistas & inhibidores , Reparación del ADN/genética , Células HEK293 , Humanos , Células MCF-7 , Subunidad 1 del Complejo Mediador/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transcriptoma/efectos de la radiación , Rayos Ultravioleta , Wortmanina
11.
Acta Biochim Biophys Sin (Shanghai) ; 48(5): 447-53, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26972278

RESUMEN

Akt/PKB plays a pivotal role in cell proliferation and survival. However, the isotype-specific roles of Akt in mitochondrial function have not been fully addressed. In this study, we explored the role of Akt in mitochondrial function after stable knockdown of the Akt isoforms in EJ human bladder cancer cells. We found that the mitochondrial mass was significantly increased in the Akt1- and Akt3-knockdown cells, and this increase was accompanied by an increase in TFAM and NRF1. Akt2 knockdown did not cause a similar effect. Interestingly, Akt3 knockdown also led to severe structural defects in the mitochondria, an increase in doxorubicin-induced senescence, and impairment of cell proliferation in galactose medium. Consistent with these observations, the mitochondrial oxygen consumption rate was significantly reduced in the Akt3-knockdown cells. An Akt3 deficiency-induced decrease in mitochondrial respiration was also observed in A549 lung cancer cells. Collectively, these results suggest that the Akt isoforms play distinct roles in mitochondrial function and that Akt3 is critical for proper mitochondrial respiration in human cancer cells.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/metabolismo , Células A549 , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microscopía Electrónica de Transmisión , Mitocondrias/patología , Consumo de Oxígeno , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
12.
J Biol Chem ; 288(17): 12014-21, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479728

RESUMEN

Identification of new anti-apoptotic genes is important for understanding the molecular mechanisms underlying apoptosis and tumorigenesis. The present study identified a novel anti-apoptotic gene named AREL1, which encodes a HECT (homologous to E6-AP carboxyl terminus) family E3 ubiquitin ligase. AREL1 interacted with and ubiquitinated IAP antagonists such as SMAC, HtrA2, and ARTS. However, AREL1 was cytosolic and did not localize to nuclei or mitochondria. The interactions between AREL1 and the IAP antagonists were specific for apoptosis-stimulated cells, in which the IAP antagonists were released into the cytosol from mitochondria. Furthermore, the ubiquitination and degradation of SMAC, HtrA2, and ARTS were significantly enhanced in AREL1-expressing cells following apoptotic stimulation, indicating that AREL1 binds to and ubiquitinates cytosolic but not mitochondria-associated forms of IAP antagonists. Furthermore, the anti-apoptotic role of AREL1-mediated degradation of SMAC, HtrA2, and ARTS was shown by simultaneous knockdown of three IAP antagonists, which caused the inhibition of caspase-3 cleavage, XIAP degradation, and induction of apoptosis. Therefore, the present study suggests that AREL1-mediated ubiquitination and degradation of cytosolic forms of three IAP antagonists plays an important role in the regulation of apoptosis.


Asunto(s)
Apoptosis/fisiología , Proteínas Portadoras/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Proteolisis , Septinas/metabolismo , Serina Endopeptidasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras/genética , Línea Celular Tumoral , Serina Peptidasa A2 que Requiere Temperaturas Altas , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Septinas/genética , Serina Endopeptidasas/genética , Ubiquitina-Proteína Ligasas/genética
13.
Cell Death Dis ; 15(1): 16, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184594

RESUMEN

Viruses have evolved to control mitochondrial quality and content to facilitate viral replication. Mitophagy is a selective autophagy, in which the damaged or unnecessary mitochondria are removed, and thus considered an essential mechanism for mitochondrial quality control. Although mitophagy manipulation by several RNA viruses has recently been reported, the effect of mitophagy regulation by varicella zoster virus (VZV) remains to be fully determined. In this study, we showed that dynamin-related protein-1 (DRP1)-mediated mitochondrial fission and subsequent PINK1/Parkin-dependent mitophagy were triggered during VZV infection, facilitating VZV replication. In addition, VZV glycoprotein E (gE) promoted PINK1/Parkin-mediated mitophagy by interacting with LC3 and upregulating mitochondrial reactive oxygen species. Importantly, VZV gE inhibited MAVS oligomerization and STING translocation to disrupt MAVS- and STING-mediated interferon (IFN) responses, and PINK1/Parkin-mediated mitophagy was required for VZV gE-mediated inhibition of IFN production. Similarly, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-mediated mitophagy induction led to increased VZV replication but attenuated IFN production in a three-dimensional human skin organ culture model. Our results provide new insights into the immune evasion mechanism of VZV gE via PINK1/Parkin-dependent mitophagy.


Asunto(s)
Inmunidad Innata , Mitofagia , Humanos , Carbonil Cianuro m-Clorofenil Hidrazona , Ubiquitina-Proteína Ligasas , Antivirales , Proteínas Quinasas
14.
Br J Pharmacol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925168

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial dysfunction contributes to the pathogenesis and maintenance of chemotherapy-induced peripheral neuropathy (CIPN), a significant limitation of cancer chemotherapy. Recently, the stimulation of mitophagy, a pivotal process for mitochondrial homeostasis, has emerged as a promising treatment strategy for neurodegenerative diseases, but its therapeutic effect on CIPN has not been explored. Here, we assessed the mitophagy-inducing activity of 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (PDE701), a diphenyl ether derivative isolated from the marine sponge Dysidea sp., and investigated its therapeutic effect on a CIPN model. EXPERIMENTAL APPROACH: Mitophagy activity was determined by a previously established mitophagy assay using mitochondrial Keima (mt-Keima). Mitophagy induction was further verified by western blotting, immunofluorescence, and electron microscopy. Mitochondrial dysfunction was analysed by measuring mitochondrial superoxide levels in SH-SY5Y cells and Drosophila larvae. A thermal nociception assay was used to evaluate the therapeutic effect of PDE701 on the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae. KEY RESULTS: PDE701 specifically induced mitophagy but was not toxic to mitochondria. PDE701 ameliorated paclitaxel-induced mitochondrial dysfunction in both SH-SY5Y cells and Drosophila larvae. Importantly, PDE701 also significantly ameliorated paclitaxel-induced thermal hyperalgesia in Drosophila larvae. Knockdown of ATG5 or ATG7 abolished the effect of PDE701 on thermal hyperalgesia, suggesting that PDE701 exerts its therapeutic effect through mitophagy induction. CONCLUSION AND IMPLICATIONS: This study identified PDE701 as a novel mitophagy inducer and a potential therapeutic compound for CIPN. Our results suggest that mitophagy stimulation is a promising strategy for the treatment of CIPN and that marine organisms are a potential source of mitophagy-inducing compounds.

15.
Exp Mol Med ; 56(3): 674-685, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443598

RESUMEN

Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.


Asunto(s)
Mitofagia , Neuroblastoma , Proteínas Serina-Treonina Quinasas , Serina-Treonina Quinasa 3 , Animales , Humanos , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitofagia/genética , Mitofagia/fisiología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Serina-Treonina Quinasa 3/genética , Serina-Treonina Quinasa 3/metabolismo , Drosophila/genética
16.
Theranostics ; 14(1): 56-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164158

RESUMEN

Rationale: Promotion of mitophagy is considered a promising strategy for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). The development of mitophagy-specific inducers with low toxicity and defined molecular mechanisms is essential for the clinical application of mitophagy-based therapy. The aim of this study was to investigate the potential of a novel small-molecule mitophagy inducer, ALT001, as a treatment for AD. Methods: ALT001 was developed through chemical optimization of an isoquinolium scaffold, which was identified from a chemical library screening using a mitophagy reporter system. In vitro and in vivo experiments were conducted to evaluate the potential of ALT001 as a mitophagy-targeting therapeutic agent and to investigate the molecular mechanisms underlying ALT001-induced mitophagy. The therapeutic effect of ALT001 was assessed in SH-SY5Y cells expressing mutant APP and mouse models of AD (5×FAD and PS2APP) by analyzing mitochondrial dysfunction and cognitive defects. Results: ALT001 specifically induces mitophagy both in vitro and in vivo but is nontoxic to mitochondria. Interestingly, we found that ALT001 induces mitophagy through the ULK1-Rab9-dependent alternative mitophagy pathway independent of canonical mitophagy pathway regulators such as ATG7 and PINK1. Importantly, ALT001 reverses mitochondrial dysfunction in SH-SY5Y cells expressing mutant APP in a mitophagy-dependent manner. ALT001 induces alternative mitophagy in mice and restores the decreased mitophagy level in a 5×FAD AD model mouse. In addition, ALT001 reverses mitochondrial dysfunction and cognitive defects in the PS2APP and 5×FAD AD mouse models. AAV-mediated silencing of Rab9 in the hippocampus further confirmed that ALT001 exerts its therapeutic effect through alternative mitophagy. Conclusion: Our results highlight the therapeutic potential of ALT001 for AD via alleviation of mitochondrial dysfunction and indicate the usefulness of the ULK1-Rab9 alternative mitophagy pathway as a therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Mitocondriales , Neuroblastoma , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Mitofagia , Modelos Animales de Enfermedad , Isoquinolinas/farmacología , Cognición
17.
Cancer Commun (Lond) ; 44(1): 47-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133457

RESUMEN

BACKGROUND: Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS: Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and ß-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS: Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.


Asunto(s)
Proteínas de la Membrana , Mitocondrias , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Movimiento Celular/fisiología , Mitocondrias/metabolismo , Lisosomas , Colesterol/metabolismo
18.
Biochem Biophys Res Commun ; 430(2): 653-8, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23211592

RESUMEN

p21(WAF1/CIP1) is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21(-/-) HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53(-/-) cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21(-/-) cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21(-/-) cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21(-/-) cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Mitocondrias/metabolismo , Recambio Mitocondrial , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células HCT116 , Humanos , Proteínas Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética
19.
Biomedicines ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36979812

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral nerve disorders characterized by progressive muscle weakness and atrophy, sensory loss, foot deformities and steppage gait. Missense mutations in the gene encoding the small heat shock protein HSPB8 (HSP22) have been associated with hereditary neuropathies, including CMT. HSPB8 is a member of the small heat shock protein family sharing a highly conserved α-crystallin domain that is critical to its chaperone activity. In this study, we modeled HSPB8 mutant-induced neuropathies in Drosophila. The overexpression of human HSPB8 mutants in Drosophila neurons produced no significant defect in fly development but led to a partial reduction in fly lifespan. Although these HSPB8 mutant genes failed to induce sensory abnormalities, they reduced the motor activity of flies and the mitochondrial functions in fly neuronal tissue. The motor defects and mitochondrial dysfunction were successfully restored by PINK1 and parkin, which are Parkinson's disease-associated genes that have critical roles in maintaining mitochondrial function and integrity. Consistently, kinetin riboside, a small molecule amplifying PINK1 activity, also rescued the loss of motor activity in our HSPB8 mutant model.

20.
Biochim Biophys Acta ; 1813(6): 1230-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21440578

RESUMEN

Chk1 plays a key role in the DNA replication checkpoint and in preserving genomic integrity. Previous studies have shown that reduced Chk1 function leads to defects in the checkpoint response and is closely associated with tumorigenesis. Here, we report that glucose deprivation caused the degradation of Chk1 protein without perturbing cell cycle progression. The induction of Chk1 degradation in response to glucose deprivation was observed in various cancer cell lines and in normal human fibroblasts. Therefore, it appears to be a universal phenomenon in mammalian cells. A specific proteasome inhibitor blocked glucose deprivation-induced Chk1 degradation. Ubiquitination of Chk1 was detected, indicating that the proteasome-ubiquitin pathway mediates Chk1 degradation upon glucose deprivation. Mechanistic studies have demonstrated that ATR-dependent phosphorylation of Chk1 at the Ser317 and Ser345 sites is not required, suggesting that the molecular mechanism for Chk1 degradation upon glucose deprivation is distinct from genotoxic stress-induced degradation. Under conditions of glucose deprivation, the cells manifested a defective checkpoint response to replication stress, camptothecin or hydroxyurea. The forced expression of Myc-Chk1 partially rescued the defective response to the replication block upon glucose deprivation. Taken together, our results indicate that glucose deprivation induces ubiquitin-mediated Chk1 degradation and defective checkpoint responses, implying its potential role in genomic instability and tumor development.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Glucosa/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Relación Dosis-Respuesta a Droga , Estabilidad de Enzimas/efectos de los fármacos , Glucosa/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Leupeptinas/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteasoma , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina/metabolismo , Factores de Tiempo , Ubiquitinación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA