Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 72(1): 71-83.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220561

RESUMEN

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/genética , Neoplasias/patología , Fosforilación , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 120(8): e2206694120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36795754

RESUMEN

Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias de la Mama/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L638-L645, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375595

RESUMEN

Pulmonary hypertension (PH) is a condition in which remodeling of the pulmonary vasculature leads to hypertrophy of the muscular vascular wall and extension of muscle into nonmuscular arteries. These pathological changes are predominantly due to the abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), enhanced cellular functions that have been linked to increases in the cell membrane protein aquaporin 1 (AQP1). However, the mechanisms underlying the increased AQP1 abundance have not been fully elucidated. Here we present data that establishes a novel interaction between AQP1 and the proteolytic enzyme caspase-3. In silico analysis of the AQP1 protein reveals two caspase-3 cleavage sites on its C-terminal tail, proximal to known ubiquitin sites. Using biotin proximity ligase techniques, we establish that AQP1 and caspase-3 interact in both human embryonic kidney (HEK) 293A cells and rat PASMCs. Furthermore, we demonstrate that AQP1 levels increase and decrease with enhanced caspase-3 activity and inhibition, respectively. Ultimately, further work characterizing this interaction could provide the foundation for novel PH therapeutics.NEW & NOTEWORTHY Pulmonary arterial smooth muscle cells (PASMCs) are integral to pulmonary vascular remodeling, a characteristic of pulmonary arterial hypertension (PAH). PASMCs isolated from robust animal models of disease demonstrate enhanced proliferation and migration, pathological functions associated with increased abundance of the membrane protein aquaporin 1 (AQP1). We present evidence of a novel interaction between the proteolytic enzyme caspase-3 and AQP1, which may control AQP1 abundance. These data suggest a potential new target for novel PAH therapies.


Asunto(s)
Acuaporina 1 , Caspasa 3 , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Animales , Humanos , Masculino , Ratas , Acuaporina 1/metabolismo , Acuaporina 1/genética , Caspasa 3/metabolismo , Proliferación Celular , Células HEK293 , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley
4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226418

RESUMEN

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Asunto(s)
Antineoplásicos , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Ratas , Calcio/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Ácidos Grasos/metabolismo , Lípidos , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPV/metabolismo
5.
Biochem Biophys Res Commun ; 696: 149472, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241809

RESUMEN

Lysosomal dysfunction and impaired autophagic flux are involved in the pathogenesis of lipotoxicity in the kidney. Here, we investigated the role of transcription factor EB (TFEB), a master regulator of autophagy-lysosomal pathway, in palmitic acid induced renal tubular epithelial cells injury. We examined lipid accumulation, autophagic flux, expression of Ps211-TFEB, and nuclear translocation of TFEB in HK-2 cells overloaded with palmitic acid (PA). By utilizing immunohistochemistry, we detected TFEB expression in renal biopsy tissues from patients with diabetic nephropathy and normal renal tissue adjacent to surgically removed renal carcinoma (controls), as well as kidney tissues from rat fed with high-fat diet (HFD) and low-fat diet (LFD). We found significant lipid accumulation, increased apoptosis, accompanied with elevated Ps211-TFEB, decreased nuclear TFEB, reduced lysosome biogenesis and insufficient autophagy in HK-2 cells treated with PA. Kidney tissues from patients with diabetic nephropathy had lower nuclear and total levels of TFEB than that in control kidney tissues. Level of renal nuclear TFEB in HFD rats was also lower than that in LFD rats. Exogenous overexpression of TFEB increased the nuclear TFEB level in HK-2 cells treated with PA, promoted lysosomal biogenesis, improved autophagic flux, reduced lipid accumulation and apoptosis. Our results collectively indicate that PA is a strong inducer for TFEB phosphorylation modification at ser211 accompanied with lower nuclear translocation of TFEB. Impairment of TFEB-mediated lysosomal biogenesis and function by palmitic acid may lead to insufficient autophagy and promote HK-2 cells injury.


Asunto(s)
Nefropatías Diabéticas , Ácido Palmítico , Ratas , Humanos , Animales , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Nefropatías Diabéticas/metabolismo , Autofagia , Lisosomas/metabolismo , Células Epiteliales/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
6.
Inorg Chem ; 63(11): 4828-4838, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38447051

RESUMEN

Light-emitting electrochemical cells (LECs) promise low-cost, large-area luminescence applications with air-stabilized electrodes and a versatile fabrication that enables the use of solution processes. Nevertheless, the commercialization of LECs is still encountering many obstacles, such as low electroluminescence (EL) efficiencies of the ionic materials. In this paper, we propose five blue to yellow ionic Ir complexes possessing 4-fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile (ppfn) as a novel cyclometalating ligand and use them in LECs. In particular, the device within di[4-fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile]-4,4'-di-tert-butyl-2,2'-bipyridyl iridium(III) hexafluorophosphate (DTBP) shows a remarkable photoluminescence quantum yield (PLQY) of 70%, and by adjusting the emissive-layer thickness, the maximal external quantum efficiency (EQE) reaches 22.15% at 532 nm under the thickness of 0.51 µm, showing the state-of-the-art value for the reported blue-green LECs.

7.
J Chem Inf Model ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913174

RESUMEN

Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.

8.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044237

RESUMEN

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Ketamina , Tálamo , Animales , Ratones , Anestesia General , Anestésicos por Inhalación/farmacología , Isoflurano/farmacología , Ketamina/farmacología , Tálamo/efectos de los fármacos
9.
Physiol Genomics ; 55(4): 168-178, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878491

RESUMEN

Non-small cell lung cancers (NSCLCs) demonstrate intrinsic resistance to cell death, even after chemotherapy. Previous work suggested defective nuclear translocation of active caspase-3 in observed resistance to cell death. We have identified mitogen-activated protein kinase-activated protein kinase 2 (MK2; encoded by the gene MAPKAPK2) is required for caspase-3 nuclear translocation in the execution of apoptosis in endothelial cells. The objective was to determine MK2 expression in NSCLCs and the association between MK2 and clinical outcomes in patients with NSCLC. Clinical and MK2 mRNA data were extracted from two demographically distinct NSCLC clinical cohorts, North American (The Cancer Genome Atlas, TCGA) and East Asian (EA). Tumor responses following first round of chemotherapy were dichotomized as clinical response (complete response, partial response, and stable disease) or progression of disease. Multivariable survival analyses were performed using Cox proportional hazard ratios and Kaplan-Meier curves. NSCLC exhibited lower MK2 expression than SCLC cell lines. In patients, lower tumor MK2 transcript levels were observed in those presenting with late-stage NSCLC. Higher MK2 expression was associated with clinical response following initial chemotherapy and independently associated with improved 2-yr survival in two distinct cohorts, 0.52 (0.28-0.98) and 0.1 (0.01-0.81), TCGA and EA, respectively, even after adjusting for common oncogenic driver mutations. Survival benefit of higher MK2 expression was unique to lung adenocarcinoma when comparing across various cancers. This study implicates MK2 in apoptosis resistance in NSCLC and suggests prognostic value of MK2 transcript levels in patients with lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Caspasa 3/uso terapéutico , Células Endoteliales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
10.
J Am Chem Soc ; 145(18): 10355-10363, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104621

RESUMEN

Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.

11.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L700-L711, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36976920

RESUMEN

We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Apoptosis , Caspasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Am J Pathol ; 192(1): 104-111, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34756873

RESUMEN

The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. Following TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in cultured primary mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels were observed in mouse tracheas. In conclusion, this study shows that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.


Asunto(s)
Contracción Muscular , Músculo Liso/fisiología , Tráquea/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Carbacol/farmacología , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Fosfotirosina/metabolismo , Proteína Quinasa C/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/fisiología , Transducción de Señal/efectos de los fármacos , Tráquea/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/metabolismo
13.
Rheumatology (Oxford) ; 62(9): 3101-3109, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661304

RESUMEN

OBJECTIVES: To evaluate the humoral immunogenicity for 6 months after the two-dose coronavirus disease 2019 (COVID-19) mRNA vaccination in adolescents and young adults (AYAs) with childhood-onset rheumatic diseases (cRDs). METHODS: This monocentric observational study was conducted between August 2020 and March 2022. Humoral immunogenicity was assessed at 2-3 weeks after first vaccine dose and 1, 3 and 6 months after the second dose by the cPass™ severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralization antibody (nAb) assay. An inhibition signal of ≥30% defined the seroconversion threshold and the readings were calibrated against the World Health Organization International Standard for SARS-CoV-2 antibodies. RESULTS. ONE HUNDRED AND SIXTY-NINE: AYAs with cRDs were recruited [median age 16.8 years (interquartile range, IQR 14.7-19.5), 52% female, 72% Chinese]. JIA (58%) and SLE (18%) comprised the major diagnoses. After second vaccine dose, 99% seroconverted with a median nAb titre of 1779.8 IU/ml (IQR 882.8-2541.9), declining to 935.6 IU/ml (IQR 261.0-1514.9) and 683.2 IU/ml (IQR 163.5-1400.5) at the 3- and 6-month timepoints, respectively. The diagnosis of JIA [odds ratio (OR) 10.1, 95% CI 1.8-58.4, P = 0.010] and treatment with anti-TNF-α (aTNF) (OR 10.1, 95% CI 1.5-70.0, P = 0.019) were independently associated with a >50% drop of nAb titres at 6 months. Withholding MTX or MMF did not affect the vaccine response or decay rate. The COVID-19 breakthrough infection was estimated at 18.2 cases/1000 patient-months with no clinical risk factors identified. CONCLUSION: Over half of AYAs with cRDs had a significant drop in SARS-CoV-2 nAb at 6-month despite an initial robust humoral response. JIA and aTNF usage are predictors of a faster decay rate.


Asunto(s)
COVID-19 , Enfermedades Reumáticas , Niño , Adolescente , Femenino , Humanos , Adulto Joven , Masculino , Vacunas contra la COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Inhibidores del Factor de Necrosis Tumoral , SARS-CoV-2 , Anticuerpos Antivirales , Enfermedades Reumáticas/tratamiento farmacológico
14.
Mol Pharm ; 20(1): 750-757, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36448927

RESUMEN

Vaccine hesitancy and the occurrence of elusive variants necessitate further treatment options for coronavirus disease 2019 (COVID-19). Accumulated evidence indicates that clinically used hypertensive drugs, angiotensin receptor blockers (ARBs), may benefit patients by mitigating disease severity and/or viral propagation. However, current clinical formulations administered orally pose systemic safety concerns and likely require a very high dose to achieve the desired therapeutic window in the lung. To address these limitations, we have developed a nanosuspension formulation of an ARB, entirely based on clinically approved materials, for inhaled treatment of COVID-19. We confirmed in vitro that our formulation exhibits physiological stability, inherent drug activity, and inhibitory effect against SARV-CoV-2 replication. Our formulation also demonstrates excellent lung pharmacokinetics and acceptable tolerability in rodents and/or nonhuman primates following direct administration into the lung. Thus, we are currently pursuing clinical development of our formulation for its uses in patients with COVID-19 or other respiratory infections.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Animales , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Telmisartán , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2 , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Infecciones del Sistema Respiratorio/tratamiento farmacológico
15.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835648

RESUMEN

The indispensable role of the SARS-CoV-2 main protease (Mpro) in the viral replication cycle and its dissimilarity to human proteases make Mpro a promising drug target. In order to identify the non-covalent Mpro inhibitors, we performed a comprehensive study using a combined computational strategy. We first screened the ZINC purchasable compound database using the pharmacophore model generated from the reference crystal structure of Mpro complexed with the inhibitor ML188. The hit compounds were then filtered by molecular docking and predicted parameters of drug-likeness and pharmacokinetics. The final molecular dynamics (MD) simulations identified three effective candidate inhibitors (ECIs) capable of maintaining binding within the substrate-binding cavity of Mpro. We further performed comparative analyses of the reference and effective complexes in terms of dynamics, thermodynamics, binding free energy (BFE), and interaction energies and modes. The results reveal that, when compared to the inter-molecular electrostatic forces/interactions, the inter-molecular van der Waals (vdW) forces/interactions are far more important in maintaining the association and determining the high affinity. Given the un-favorable effects of the inter-molecular electrostatic interactions-association destabilization by the competitive hydrogen bond (HB) interactions and the reduced binding affinity arising from the un-compensable increase in the electrostatic desolvation penalty-we suggest that enhancing the inter-molecular vdW interactions while avoiding introducing the deeply buried HBs may be a promising strategy in future inhibitor optimization.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores
16.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L27-L36, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537103

RESUMEN

Asthma is a common heterogeneous respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR) which is associated with abnormality in smooth muscle contractility. The epithelial cell-derived cytokine IL-25 is implicated in type 2 immune pathology including asthma, whereas the underlying mechanisms have not been fully elucidated. This study aims to investigate the effects of IL-25 on mouse tracheal smooth muscle contractility and elucidate the cellular mechanisms. Incubation with IL-25 augmented the contraction of mouse tracheal smooth muscles, which could be suppressed by the L-type voltage-dependent Ca2+ channel (L-VDCC) blocker nifedipine. Furthermore, IL-25 enhanced the cytosolic Ca2+ signals and triggered the upregulation of α1C L-VDCC (CaV1.2) in primary cultured mouse tracheal smooth muscle cells. Knocking down IL-17RA/IL-17RB receptors or inhibiting the transforming growth factor-ß-activated kinase 1 (TAK1)-tumor progression locus 2 (TPL2)-MAPK kinase 1/2 (MEK1/2)-ERK1/2-activating protein-1 (AP-1) signaling pathways suppressed the IL-25-elicited upregulation of CaV1.2 and hyperreactivity in tracheal smooth muscles. Moreover, inhibition of TPL2, ERK1/2 or L-VDCC alleviated the AHR symptom induced by IL-25 in a murine model. This study revealed that IL-25 potentiated the contraction of tracheal smooth muscle and evoked AHR via activation of TPL2-ERK1/2-CaV1.2 signaling, providing novel targets for the treatment of asthma with a high-IL-25 phenotype.


Asunto(s)
Asma , Canales de Calcio Tipo L , Interleucina-17/farmacología , Animales , Asma/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/farmacología , Ratones , Contracción Muscular , Músculo Liso/metabolismo , Tráquea/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763400

RESUMEN

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Ratones , Arteria Pulmonar/metabolismo , Ratas , Esclerodermia Sistémica/patología , Remodelación Vascular
18.
Small ; 18(41): e2203310, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084232

RESUMEN

The rapid advancement of transmission electron microscopy has resulted in revolutions in a variety of fields, including physics, chemistry, and materials science. With single-atom resolution, 3D information of each atom in nanoparticles is revealed, while 4D electron tomography is shown to capture the atomic structural kinetics in metal nanoparticles after phase transformation. Quantitative measurements of physical and chemical properties such as chemical coordination, defects, dislocation, and local strain have been made. However, due to the incompatibility of high dose rate with other ultrathin morphologies, such as nanowires, atomic electron tomography has been primarily limited to quasi-spherical nanoparticles. Herein, the 3D atomic structure of a complex core-shell nanowire composed of an ultrathin Boerdijk-Coxeter-Bernal (BCB) core nanowire and a noble metal thin layer shell deposited on the BCB nanowire surface is discovered. Furthermore, it is demonstrated that a new superthin noble metal layer deposition on an ultrathin BCB nanowire could mitigate electron beam damage using an in situ transmission electron microscope and atomic resolution electron tomography. The colloidal coating method developed for electron tomography can be broadly applied to protect the ultrathin nanomaterials from electron beam damage, benefiting both the advanced material characterizations and enabling fundamental in situ mechanistic studies.


Asunto(s)
Nanopartículas del Metal , Nanocables , Tomografía con Microscopio Electrónico , Electrones , Nanopartículas del Metal/química , Metales/química , Microscopía Electrónica de Transmisión , Nanocables/química
19.
Biol Reprod ; 107(4): 1026-1034, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35774023

RESUMEN

G protein-coupled estrogen receptor (GPER), a seven-transmembrane G protein-coupled receptor, mediates the rapid pre-genomic signaling actions of estrogen and derivatives thereof. The expression of GPER is extensive in mammal male reproductive system. However, the functional role of GPER in mouse sperm has not yet been well recognized. This study revealed that GPER was expressed at the acrosome and the mid-flagellum of the mouse sperm. The endogenous GPER ligand 17ß-estradiol and the selective GPER agonist G1 increased intracellular Ca2+ concentration ([Ca2+]i) in mouse sperm, which could be abolished by G15, an antagonist of GPER. In addition, the G1-stimulated Ca2+ response was attenuated by interference with the phospholipase C (PLC) signaling pathways or by blocking the cation channel of sperm (CatSper). Chlortetracycline staining assay showed that the activation of GPER increased the incidence of acrosome-reacted sperm. Conclusively, GPER was located at the acrosome and mid-flagellum of the mouse sperm. Activation of GPER triggered the elevation of [Ca2+]i through PLC-dependent Ca2+ mobilization and CatSper-mediated Ca2+ influx, which promoted the acrosome reaction of mouse sperm.


Asunto(s)
Reacción Acrosómica , Clortetraciclina , Animales , Calcio/metabolismo , Clortetraciclina/metabolismo , Estradiol/metabolismo , Estrógenos/metabolismo , Proteínas de Unión al GTP/metabolismo , Ligandos , Masculino , Mamíferos/metabolismo , Ratones , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo
20.
Mol Hum Reprod ; 28(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040999

RESUMEN

The maturation of sperms is dependent on the coordinated interactions between sperm and the unique epididymal luminal milieu, which is characterized by high K+ content. This study investigated the involvement of transient receptor potential vanilloid 4 (TRPV4) in the K+ secretion of epididymal epithelium. The expression level and cellular localization of TRPV4 and Ca2+-activated K+ channels (KCa) were analyzed via RT-PCR, real-time quantitative PCR, western blot and immunofluorescence. The functional role of TRPV4 was investigated using short-circuit current (ISC) and intracellular Ca2+ imaging techniques. We found a predominant expression of TRPV4 in the corpus and cauda epididymal epithelium. Activation of TRPV4 with a selective agonist, GSK1016790A, stimulated a transient decrease in the ISC of the epididymal epithelium. The ISC response was abolished by either the TRPV4 antagonists, HC067047 and RN-1734, or the removal of basolateral K+. Simultaneously, the application of GSK1016790A triggered Ca2+ influx in epididymal epithelial cells. Our data also indicated that the big conductance KCa (BK), small conductance KCa (SK) and intermediate conductance KCa (IK) were all expressed in rat epididymis. Pharmacological studies revealed that BK, but not SK and IK, mediated TRPV4-elicited transepithelial K+ secretion. Finally, we demonstrated that TRPV4 and BK were localized in the epididymal epithelium, which showed an increased expression level from caput to cauda regions of rat epididymis. This study implicates that TRPV4 plays an important role in the formation of high K+ concentration in epididymal intraluminal fluid via promoting transepithelial K+ secretion mediated by BK.


Asunto(s)
Epidídimo , Canales Catiónicos TRPV , Animales , Epidídimo/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Masculino , Ratas , Espermatozoides/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA