Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neural Netw ; 155: 461-474, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152378

RESUMEN

Sensor fusion is used to solve the localization problem in autonomous mobile robotics applications by integrating complementary data acquired from various sensors. In this study, we adopt Visual-Inertial Odometry (VIO), a low-cost sensor fusion method that integrates inertial data with images using a Deep Learning (DL) framework to predict the position of an Unmanned Aerial System (UAS). The developed system has three steps. The first step extracts features from images acquired from a platform camera and uses a Convolutional Neural Network (CNN) to project them to a visual feature manifold. Next, temporal features are extracted from the Inertial Measurement Unit (IMU) data on the platform using a Bidirectional Long Short Term Memory (BiLSTM) network and are projected to an inertial feature manifold. The final step estimates the UAS position by fusing the visual and inertial feature manifolds via a BiLSTM-based architecture. The proposed approach is tested with the public EuRoC (European Robotics Challenge) dataset and simulation environment data generated within the Robot Operating System (ROS). The result of the EuRoC dataset shows that the proposed approach achieves successful position estimations comparable to previous popular VIO methods. In addition, as a result of the experiment with the simulation dataset, the UAS position is successfully estimated with 0.167 Mean Square Error (RMSE). The obtained results prove that the proposed deep architecture is useful for UAS position estimation.


Asunto(s)
Aprendizaje Profundo , Robótica , Especies Reactivas de Oxígeno , Redes Neurales de la Computación , Memoria a Largo Plazo
2.
Front Public Health ; 10: 855994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734764

RESUMEN

Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible.


Asunto(s)
COVID-19 , Robótica , Inteligencia Artificial , COVID-19/prevención & control , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA