Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(7): 3763-3781, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831669

RESUMEN

Cardiac remodeling is a commonly observed pathophysiological phenomenon associated with the progression of heart failure in various cardiovascular disorders. Carnosol, a phenolic compound extracted from rosemary, possesses noteworthy pharmacological properties including anti-inflammatory, antioxidant, and anti-apoptotic activities. Considering the pivotal involvement of inflammation, oxidative stress, and apoptosis in cardiac remodeling, the present study aims to assess the effects of carnosol on cardiac remodeling and elucidate the underlying mechanisms. In an in vivo model, cardiac remodeling was induced by performing transverse aortic constriction (TAC) surgery on mice, while an in vitro model was established by treating neonatal rat cardiomyocytes (NRCMs) with Ang II. Our results revealed that carnosol treatment effectively ameliorated TAC-induced myocardial hypertrophy and fibrosis, thereby attenuating cardiac dysfunction in mice. Moreover, carnosol improved cardiac electrical remodeling and restored connexin 43 expression, thereby reducing the vulnerability to ventricular fibrillation (VF). Furthermore, carnosol significantly reduced Ang II-induced cardiomyocyte hypertrophy in NRCMs and alleviated the upregulation of hypertrophy and fibrosis markers. Both in vivo and in vitro models of cardiac remodeling exhibited the anti-inflammatory, anti-oxidative, and anti-apoptotic effects of carnosol. Mechanistically, these effects were mediated through the Sirt1/PI3K/AKT pathway, as the protective effects of carnosol were abrogated upon inhibition of Sirt1 or activation of the PI3K/AKT pathway. In summary, our study suggests that carnosol prevents cardiac structural and electrical remodeling by regulating the anti-inflammatory, anti-oxidative, and anti-apoptotic effects mediated by Sirt1/PI3K/AKT signaling pathways, thereby alleviating heart failure and VF.


Asunto(s)
Abietanos , Insuficiencia Cardíaca , Miocitos Cardíacos , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Abietanos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Masculino , Ratas , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Fibrosis , Sirtuina 1/metabolismo , Ratas Sprague-Dawley , Angiotensina II , Cardiomegalia/tratamiento farmacológico
2.
Phytother Res ; 38(2): 1044-1058, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38153125

RESUMEN

Cardiac dysfunction and arrhythmia are severe complications of sepsis-induced cardiomyopathy and are associated with an increased risk of morbidity and mortality. Currently, the precise mechanism for sepsis-induced myocardial damage remains unclear. Astilbin, a flavonoid, is reported to have anti-inflammatory, antioxidative, and antiapoptotic properties. However, the effects of astilbin on sepsis-induced cardiomyopathy have not been studied so far. This study aims to investigate the effect of astilbin in sepsis-induced myocardial injury and elucidate the underlying mechanism. In vivo and in vitro sepsis models were created using lipopolysaccharide (LPS) as an inducer in H9C2 cardiomyocytes and C57BL/6 mice, respectively. Our results demonstrated that astilbin reduced myocardial injury and improved cardiac function. Moreover, astilbin prolonged the QT and corrected QT intervals, attenuated myocardial electrical remodeling, and promoted gap junction protein (Cx43) and ion channels expression, thereby reducing the susceptibility of ventricular fibrillation. In addition, astilbin alleviated LPS-induced inflammation, oxidative stress, and apoptosis. Astilbin suppressed the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in vivo and in vitro models. Astilbin remarkedly upregulated the nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1) expression. The in vitro treatment with an NRF2 inhibitor reversed the inhibition of the TLR4/NF-κB pathway and antioxidant properties of astilbin. Astilbin attenuated LPS-induced myocardial injury, cardiac dysfunction, susceptibility to VF, inflammation, oxidative stress, and apoptosis by activating the NRF2/HO-1 pathway and inhibiting TLR4/ NF-κB pathway. These results suggest that astilbin could be an effective and promising therapeutics target for the treatment of sepsis-induced cardiomyopathy.


Asunto(s)
Cardiomiopatías , Flavonoles , Cardiopatías , Sepsis , Ratones , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Inflamación , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cardiomiopatías/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA