Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioessays ; 45(7): e2200232, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37339822

RESUMEN

DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction-modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co-opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5-methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4-methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co-option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems.


Asunto(s)
Eucariontes , Transferencia de Gen Horizontal , Animales , Eucariontes/genética , Eucariontes/metabolismo , Metilación de ADN/genética , Epigénesis Genética , Metiltransferasas/genética
2.
Biochemistry (Mosc) ; 88(11): 1754-1762, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105196

RESUMEN

Reverse transcriptases (RT), or RNA-dependent DNA polymerases, are unorthodox enzymes that originally added a new angle to the conventional view of the unidirectional flow of genetic information in the cell from DNA to RNA to protein. First discovered in vertebrate retroviruses, RTs were since re-discovered in most eukaryotes, bacteria, and archaea, spanning essentially all domains of life. For retroviruses, RTs provide the ability to copy the RNA genome into DNA for subsequent incorporation into the host genome, which is essential for their replication and survival. In cellular organisms, most RT sequences originate from retrotransposons, the type of self-replicating genetic elements that rely on reverse transcription to copy and paste their sequences into new genomic locations. Some retroelements, however, can undergo domestication, eventually becoming a valuable addition to the overall repertoire of cellular enzymes. They can be beneficial yet accessory, like the diversity-generating elements, or even essential, like the telomerase reverse transcriptases. Nowadays, ever-increasing numbers of domesticated RT-carrying genetic elements are being discovered. It may be argued that domesticated RTs and reverse transcription in general is more widespread in cellular organisms than previously thought, and that many important cellular functions, such as chromosome end maintenance, may evolve from an originally selfish process of converting RNA into DNA.


Asunto(s)
ADN Polimerasa Dirigida por ARN , Transcripción Reversa , ADN Polimerasa Dirigida por ARN/genética , ARN , Retroelementos , ARN Polimerasas Dirigidas por ADN/genética
3.
Mol Biol Evol ; 38(11): 5005-5020, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320655

RESUMEN

Penelope-like elements (PLEs) are an enigmatic clade of retrotransposons whose reverse transcriptases (RTs) share a most recent common ancestor with telomerase RTs. The single ORF of canonical endonuclease (EN)+ PLEs encodes RT and a C-terminal GIY-YIG EN that enables intrachromosomal integration, whereas EN- PLEs lack EN and are generally restricted to chromosome termini. EN+ PLEs have only been found in animals, except for one case of horizontal transfer to conifers, whereas EN- PLEs occur in several kingdoms. Here, we report a new, deep-branching PLE clade with a permuted domain order, whereby an N-terminal GIY-YIG EN is linked to a C-terminal RT by a short domain with a characteristic CxC motif. These N-terminal EN+ PLEs share a structural organization, including pseudo-LTRs and complex tandem/inverted insertions, with canonical EN+ PLEs from Penelope/Poseidon, Neptune, and Nematis clades, and show insertion bias for microsatellites, but lack canonical hammerhead ribozyme motifs. However, their phylogenetic distribution is much broader. The Naiads, found in numerous invertebrate phyla, can reach tens of thousands of copies per genome. In spiders and clams, Naiads independently evolved to encode selenoproteins containing multiple selenocysteines. Chlamys, which lack the CCHH motif universal to PLE ENs, occur in green algae, spike mosses (targeting ribosomal DNA), and slime molds. Unlike canonical PLEs, RTs of N-terminal EN+ PLEs contain the insertion-in-fingers domain (IFD), strengthening the link between PLEs and telomerases. Additionally, we describe Hydra, a novel metazoan C-terminal EN+ clade. Overall, we conclude that PLE diversity, taxonomic distribution, and abundance are comparable with non-LTR and LTR-retrotransposons.


Asunto(s)
Invertebrados , Retroelementos , Animales , Genoma , Invertebrados/genética , Filogenia , ADN Polimerasa Dirigida por ARN/genética , Retroelementos/genética
4.
Nature ; 500(7463): 453-7, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23873043

RESUMEN

Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.


Asunto(s)
Evolución Biológica , Conversión Génica/genética , Genoma/genética , Reproducción Asexuada/genética , Rotíferos/genética , Animales , Transferencia de Gen Horizontal/genética , Genómica , Meiosis/genética , Modelos Biológicos , Tetraploidía
5.
Mol Biol Evol ; 34(9): 2245-2257, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575409

RESUMEN

Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3'-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3'-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer.


Asunto(s)
Telómero/genética , Secuencia de Aminoácidos , Animales , Elementos Transponibles de ADN/genética , Células Eucariotas/metabolismo , Transferencia de Gen Horizontal/genética , Sistemas de Lectura Abierta , Filogenia , ARN , ARN Catalítico/genética , ADN Polimerasa Dirigida por ARN/genética , Retroelementos/genética , Rotíferos/genética , Homología de Secuencia de Aminoácido , Telómero/metabolismo
6.
Curr Genet ; 64(6): 1287-1301, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29761210

RESUMEN

Cellular reverse transcriptase-related (rvt) genes represent a novel class of reverse transcriptases (RTs), which are only distantly related to RTs of retrotransposons and retroviruses, but, similarly to telomerase RTs, are immobilized in the genome as single-copy genes. They have been preserved by natural selection throughout the evolutionary history of large taxonomic groups, including most fungi, a few plants and invertebrates, and even certain bacteria, being the only RTs present across different domains of life. Bacterial rvt genes are exceptionally rare but phylogenetically related, consistent with common origin of bacterial rvt genes rather than eukaryote-to-bacteria transfer. To investigate biochemical properties of bacterial RVTs, we conducted in vitro studies of recombinant HaRVT protein from the filamentous gliding bacterium Herpetosiphon aurantiacus (Chloroflexi). Although HaRVT does not utilize externally added standard primer-template combinations, in the presence of divalent manganese, it can polymerize very short products, using dNTPs rather than NTPs, with a strong preference for dCTP incorporation. Furthermore, we investigated the highly conserved N- and C-terminal domains, which distinguish RVT proteins from other RTs. We show that the N-terminal coiled-coil motif, which is present in nearly all RVTs, is responsible for the ability of HaRVT to multimerize in solution, forming up to octamers. The C-terminal domain may be capable of protein priming, which is abolished by site-directed mutagenesis of the catalytic aspartate and greatly reduced in the absence of the conserved tyrosine residues near the C-terminus. The unusual biochemical properties displayed by RVT in vitro will provide the basis for understanding its biological function in vivo.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas Bacterianas/genética , Fenómenos Químicos , Activación Enzimática , Nucleótidos/metabolismo , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , ADN Polimerasa Dirigida por ARN/clasificación , ADN Polimerasa Dirigida por ARN/genética , Proteínas Recombinantes , Transcripción Reversa , Especificidad por Sustrato
7.
Mol Biol Evol ; 30(2): 397-408, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23079419

RESUMEN

Although small RNAs efficiently control transposition activity of most transposons in the host genome, such an immune system is not always applicable against a new transposon's invasions. Here, we explored a possibility to introduce potentially mobile copy of the Penelope retroelement previously implicated in hybrid dysgenesis syndrome in Drosophila virilis into the genomes of two distant Drosophila species. The consequences of such introduction were monitored at different phases after experimental colonization as well as in D. virilis species, which is apparently in the process of ongoing Penelope invasion. We investigated the expression of Penelope and biogenesis of Penelope-derived small RNAs in D. virilis and D. melanogaster strains originally lacking active copies of this element after experimental Penelope invasion. These strains were transformed by constructs containing intact Penelope copies. We show that immediately after transformation, which imitates the first stage of retroelement invasion, Penelope undergoes transposition predominantly in somatic tissues, and may produce siRNAs that are apparently unable to completely silence its activity. However, at the later stages of colonization Penelope copies may jump into one of the piRNA-clusters, which results in production of homologous piRNAs that are maternally deposited and can silence euchromatic transcriptionally active copies of Penelope in trans and, hence, prevent further amplification of the invader in the host genome. Intact Penelope copies and different classes of Penelope-derived small RNAs were found in most geographical strains of D. virilis collected throughout the world. Importantly, all strains of this species containing full-length Penelope tested do not produce gonadal sterility in dysgenic crosses and, hence, exhibit neutral cytotype. To understand whether RNA interference mechanism able to target Penelope operates in related species of the virilis group, we correlated the presence of full-length and potentially active Penelope with the occurrence of piRNAs homologous to this transposable element in the ovaries of species comprising the group. It was demonstrated that Penelope-derived piRNAs are present in all virilis group species containing full-length but transcriptionally silent copies of this element that probably represent the remnants of its previous invasions taking place in the course of the virilis species divergent evolution.


Asunto(s)
Evolución Biológica , Drosophila/genética , ARN Interferente Pequeño/genética , Retroelementos , Animales , Animales Modificados Genéticamente , Drosophila/metabolismo , Femenino , Orden Génico , Genoma de los Insectos , Masculino , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
8.
Mob DNA ; 15(1): 12, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863000

RESUMEN

Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon from Bombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified from E. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic "tail" signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.

9.
Nat Commun ; 13(1): 1072, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228526

RESUMEN

DNA modifications are used to regulate gene expression and defend against invading genetic elements. In eukaryotes, modifications predominantly involve C5-methylcytosine (5mC) and occasionally N6-methyladenine (6mA), while bacteria frequently use N4-methylcytosine (4mC) in addition to 5mC and 6mA. Here we report that 4mC can serve as an epigenetic mark in eukaryotes. Bdelloid rotifers, tiny freshwater invertebrates with transposon-poor genomes rich in foreign genes, lack canonical eukaryotic C5-methyltransferases for 5mC addition, but encode an amino-methyltransferase, N4CMT, captured from bacteria >60 Mya. N4CMT deposits 4mC at active transposons and certain tandem repeats, and fusion to a chromodomain shapes its "histone-read-DNA-write" architecture recognizing silent chromatin marks. Furthermore, amplification of SETDB1 H3K9me3 histone methyltransferases yields variants preferentially binding 4mC-DNA, suggesting "DNA-read-histone-write" partnership to maintain chromatin-based silencing. Our results show how non-native DNA methyl groups can reshape epigenetic systems to silence transposons and demonstrate the potential of horizontal gene transfer to drive regulatory innovation in eukaryotes.


Asunto(s)
Eucariontes , Histonas , Bacterias/genética , Bacterias/metabolismo , Cromatina , ADN/metabolismo , Metilación de ADN , Epigénesis Genética , Eucariontes/genética , Eucariontes/metabolismo , Histonas/genética , Histonas/metabolismo
10.
BMC Evol Biol ; 11: 74, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21426536

RESUMEN

BACKGROUND: Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. RESULTS: Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline) conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. CONCLUSIONS: The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form tight clusters in this species. In the case of the other species, O. pardalina, we found no clear trace of concerted evolution for the dispersed hsp70 genes. Furthermore, in the latter species we detected hsp70 pseudogenes, representing a hallmark of the birth-and-death process.


Asunto(s)
Dípteros/genética , Ecosistema , Evolución Molecular , Proteínas HSP70 de Choque Térmico/genética , Familia de Multigenes , Animales , Genes de Insecto , Biblioteca Genómica , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie , Temperatura
11.
Nat Commun ; 11(1): 6421, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339818

RESUMEN

Sexual reproduction is almost ubiquitous among extant eukaryotes. As most asexual lineages are short-lived, abandoning sex is commonly regarded as an evolutionary dead end. Still, putative anciently asexual lineages challenge this view. One of the most striking examples are bdelloid rotifers, microscopic freshwater invertebrates believed to have completely abandoned sexual reproduction tens of Myr ago. Here, we compare whole genomes of 11 wild-caught individuals of the bdelloid rotifer Adineta vaga and present evidence that some patterns in its genetic variation are incompatible with strict clonality and lack of genetic exchange. These patterns include genotype proportions close to Hardy-Weinberg expectations within loci, lack of linkage disequilibrium between distant loci, incongruent haplotype phylogenies across the genome, and evidence for hybridization between divergent lineages. Analysis of triallelic sites independently corroborates these findings. Our results provide evidence for interindividual genetic exchange and recombination in A. vaga, a species previously thought to be anciently asexual.


Asunto(s)
Genoma , Recombinación Genética/genética , Rotíferos/genética , Alelos , Animales , Genética de Población , Células Germinativas/metabolismo , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Filogenia , Secuenciación Completa del Genoma
12.
Genome Biol Evol ; 11(3): 906-918, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796812

RESUMEN

Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based primarily on the key enzymes required for transposition, such as transposases/recombinases and reverse transcriptases. Recent progress in whole-genome sequencing and long-read assembly, combined with expansion of the familiar range of model organisms, resulted in identification of unprecedentedly long transposable units spanning dozens or even hundreds of kilobases, initially in prokaryotic and more recently in eukaryotic systems. Here, we focus on such oversized eukaryotic TEs, including retrotransposons and DNA transposons, outline their complex and often combinatorial nature and closely intertwined relationship with viruses, and discuss their potential for participating in transfer of long stretches of DNA in eukaryotes.


Asunto(s)
Elementos Transponibles de ADN , Eucariontes/genética , Retroelementos , Animales , Planarias/genética , Rotíferos/genética , Telómero/genética
13.
Mol Ecol ; 17(21): 4763-77, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19140990

RESUMEN

A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name 'soldier flies', occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 degrees C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.


Asunto(s)
Dípteros/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Proteínas de Insectos/metabolismo , Animales , Dípteros/metabolismo , Ecosistema , Genes de Insecto , Proteínas HSP70 de Choque Térmico/genética , Calor , Proteínas de Insectos/genética , Larva/genética , Larva/metabolismo , Proteómica , Especificidad de la Especie , Regulación hacia Arriba
14.
Mob DNA ; 4(1): 19, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23981484

RESUMEN

BACKGROUND: Penelope-like elements (PLEs) are an enigmatic group of retroelements sharing a common ancestor with telomerase reverse transcriptases. In our previous studies, we identified endonuclease-deficient PLEs that are associated with telomeres in bdelloid rotifers, small freshwater invertebrates best known for their long-term asexuality and high foreign DNA content. Completion of the high-quality draft genome sequence of the bdelloid rotifer Adineta vaga provides us with the opportunity to examine its genomic transposable element (TE) content, as well as TE impact on genome function and evolution. RESULTS: We performed an exhaustive search of the A. vaga genome assembly, aimed at identification of canonical PLEs combining both the reverse transcriptase (RT) and the GIY-YIG endonuclease (EN) domains. We find that the RT/EN-containing Penelope families co-exist in the A. vaga genome with the EN-deficient RT-containing Athena retroelements. Canonical PLEs are present at very low copy numbers, often as a single-copy, and there is no evidence that they might preferentially co-mobilize EN-deficient PLEs. We also find that Penelope elements can participate in expansion of A. vaga multigene families via trans-action of their enzymatic machinery, as evidenced by identification of intron-containing host genes framed by the Penelope terminal repeats and characteristic target-site duplications generated upon insertion. In addition, we find that Penelope open reading frames (ORFs) in several families have incorporated long stretches of coding sequence several hundred amino acids (aa) in length that are highly enriched in asparagine residues, a phenomenon not observed in other retrotransposons. CONCLUSIONS: Our results show that, despite their low abundance and low transcriptional activity in the A. vaga genome, endonuclease-containing Penelope elements can participate in expansion of host multigene families. We conclude that the terminal repeats represent the cis-acting sequences required for mobilization of the intervening region in trans by the Penelope-encoded enzymatic activities. We also hypothesize that the unusual capture of long N-rich segments by the Penelope ORF occurs as a consequence of peculiarities of its replication mechanism. These findings emphasize the unconventional nature of Penelope retrotransposons, which, in contrast to all other retrotransposon types, are capable of dispersing intron-containing genes, thereby questioning the validity of traditional estimates of gene retrocopies in PLE-containing eukaryotic genomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA