Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 51(3): 1488-1499, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36718812

RESUMEN

Advances in DNA sequencing technology and bioinformatics have revealed the enormous potential of microbes to produce structurally complex specialized metabolites with diverse uses in medicine and agriculture. However, these molecules typically require structural modification to optimize them for application, which can be difficult using synthetic chemistry. Bioengineering offers a complementary approach to structural modification but is often hampered by genetic intractability and requires a thorough understanding of biosynthetic gene function. Expression of specialized metabolite biosynthetic gene clusters (BGCs) in heterologous hosts can surmount these problems. However, current approaches to BGC cloning and manipulation are inefficient, lack fidelity, and can be prohibitively expensive. Here, we report a yeast-based platform that exploits transformation-associated recombination (TAR) for high efficiency capture and parallelized manipulation of BGCs. As a proof of concept, we clone, heterologously express and genetically analyze BGCs for the structurally related nonribosomal peptides eponemycin and TMC-86A, clarifying remaining ambiguities in the biosynthesis of these important proteasome inhibitors. Our results show that the eponemycin BGC also directs the production of TMC-86A and reveal contrasting mechanisms for initiating the assembly of these two metabolites. Moreover, our data shed light on the mechanisms for biosynthesis and incorporation of 4,5-dehydro-l-leucine (dhL), an unusual nonproteinogenic amino acid incorporated into both TMC-86A and eponemycin.


Asunto(s)
Inhibidores de Proteasoma , Saccharomyces cerevisiae , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/metabolismo , Secuencia de Bases , Saccharomyces cerevisiae/genética , Familia de Multigenes
2.
Microb Cell Fact ; 19(1): 111, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448325

RESUMEN

BACKGROUND: Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS: Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS: We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.


Asunto(s)
Antibióticos Antineoplásicos/biosíntesis , Plicamicina/biosíntesis , Policétidos/metabolismo , Streptomyces , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
3.
J Am Chem Soc ; 138(13): 4342-5, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26999044

RESUMEN

The α,ß-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [(13)C-methyl]l-methionine implicated an α-dimethyl-ß-keto acid intermediate in the biosynthesis of TMC-86A. Incubation of the chemically synthesized α-dimethyl-ß-keto acid with a purified recombinant flavin-dependent enzyme that is conserved in all known pathways for epoxyketone biosynthesis resulted in formation of the corresponding α-methyl-α,ß-epoxyketone. This transformation appears to proceed via an unprecedented decarboxylation-dehydrogenation-monooxygenation cascade. The biosynthesis of the TMC-86A warhead is completed by cytochrome P450-mediated hydroxylation of the α-methyl-α,ß-epoxyketone.


Asunto(s)
Flavinas/metabolismo , Inhibidores de Proteasoma/farmacología , Carboxiliasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Dinitrocresoles , Dipéptidos/farmacología , Metionina/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estereoisomerismo , Streptomyces/enzimología
4.
Microbiology (Reading) ; 161(Pt 2): 272-284, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416691

RESUMEN

The mithramycin biosynthesis gene cluster of Streptomyces argillaceus ATCC 12956 contains 34 ORFs and includes two putative regulatory genes (mtmR and mtrY), which encode proteins of the SARP (Streptomyces antibiotic regulatory protein) and PadR transcriptional regulator families, respectively. MtmR was proposed to behave as a positive regulator of mithramycin biosynthesis. Inactivation and overexpression of mtrY indicated that it is also a positive regulator of mithramycin biosynthesis, being non-essential but required to maintain high levels of mithramycin production in the producer strain. Transcriptional analyses by reverse transcription PCR and quantitative real-time PCR of mithramycin genes, and promoter-probe assays in S. argillaceus polyketide synthase and regulatory mutants and the WT strain, and in the heterologous host Streptomyces albus, were carried out to analyse the role of MtmR and MtrY in the regulation of the mithramycin gene cluster. These experiments revealed that MtmR had a positive role, activating expression of at least six polycistronic units (mtmR-mtmE, mtmQ-mtmTII, mtmX-mtmY, mtmV-mtmTIII, mtmW-mtmMI and mtmGI-mtrB) and one monocistronic unit (mtmGII) in the mithramycin gene cluster. However, MtrY played a dual role in the mithramycin gene cluster: (i) repressing the expression of resistance genes and its coding gene itself by controlling the activity of the mtrYp promoter that directs expression of the regulator mtrY and resistance genes, with this repression being released in the presence of mithramycin; and (ii) enhancing the expression of mithramycin biosynthesis genes when mithramycin is present, by interacting with the mtmRp promoter that controls expression of the mtmR regulator, amongst others.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Plicamicina/biosíntesis , Proteínas Represoras/metabolismo , Streptomyces/genética , Transactivadores/metabolismo , Transcripción Genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Streptomyces/metabolismo , Transactivadores/genética
5.
Metab Eng ; 20: 187-97, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24148183

RESUMEN

Mithramycin (MTM) is a polyketide antitumor compound produced by Streptomyces argillaceus constituted by a tricyclic aglycone with two aliphatic side chains, a trisaccharide and a disaccharide chain. The biosynthesis of the polyketide aglycone is initiated by the condensation of ten malonyl-CoA units to render a carbon chain that is modified to a tetracyclic intermediate and sequentially glycosylated by five deoxysugars originated from glucose-1-phosphate. Further oxidation and reduction render the final compound. We aimed to increase the precursor supply of malonyl-CoA and/or glucose-1-phosphate in S. argillaceus to enhance MTM production. We have shown that by overexpressing either the S. coelicolor phosphoglucomutase gene pgm or the acetyl-CoA carboxylase ovmGIH genes from the oviedomycin biosynthesis gene cluster in S. argillaceus, we were able to increase the intracellular pool of glucose-1-phosphate and malonyl-CoA, respectively. Moreover, we have cloned the S. argillaceus ADP-glucose pyrophosphorylase gene glgCa and the acyl-CoA:diacylglycerol acyltransferase gene aftAa, and we showed that by inactivating them, an increase of the intracellular concentration of glucose-1-phosphate/glucose-6-phosphate and malonyl-CoA/acetyl-CoA was observed, respectively. Each individual modification resulted in an enhancement of MTM production but the highest production level was obtained by combining all strategies together. In addition, some of these strategies were successfully applied to increase production of four MTM derivatives with improved pharmacological properties: demycarosyl-mithramycin, demycarosyl-3D-ß-D-digitoxosyl-mithramycin, mithramycin SK and mithramycin SDK.


Asunto(s)
Antibióticos Antineoplásicos/biosíntesis , Glucofosfatos , Malonil Coenzima A , Ingeniería Metabólica , Plicamicina/biosíntesis , Streptomyces , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Glucofosfatos/genética , Glucofosfatos/metabolismo , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
6.
Mem Inst Oswaldo Cruz ; 108(7): 932-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24037107

RESUMEN

A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.


Asunto(s)
ADN Intergénico/genética , ARN Lider Empalmado/genética , Trypanosoma cruzi/genética , Animales , Enfermedad de Chagas/transmisión , Colombia , ADN Protozoario/genética , Reservorios de Enfermedades/parasitología , Genotipo , Insectos Vectores/parasitología , Reacción en Cadena de la Polimerasa , Triatoma/parasitología , Triatominae/parasitología
7.
ACS Chem Biol ; 14(6): 1305-1309, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31095370

RESUMEN

Pentamycin is a polyene antibiotic, registered in Switzerland for the treatment of vaginal candidiasis, trichomoniasis, and mixed infections. Chemical instability has hindered its widespread application and development as a drug. Here, we report the identification of Streptomyces sp. S816, isolated from Philippine mangrove soil, as a pentamycin producer. Genome sequence analysis identified the putative pentamycin biosynthetic gene cluster, which shows a high degree of similarity to the gene cluster responsible for filipin III biosynthesis. The ptnJ gene, which is absent from the filipin III biosynthetic gene cluster, was shown to encode a cytochrome P450 capable of converting filipin III to pentamycin. This confirms that the cluster directs pentamycin biosynthesis, paving the way for biosynthetic engineering approaches to the production of pentamycin analogues. Several other Streptomyces genomes were found to contain ptnJ orthologues clustered with genes encoding polyketide synthases that appear to have similar architectures to those responsible for the assembly of filipin III and pentamycin, suggesting pentamycin production may be common in Streptomyces species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Macrólidos/metabolismo , Streptomyces/metabolismo , Vías Biosintéticas , Catálisis , Genes Bacterianos , Familia de Multigenes , Polienos/metabolismo , Streptomyces/genética
8.
Front Microbiol ; 8: 194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28239372

RESUMEN

Genome mining of the mithramycin producer Streptomyces argillaceus ATCC 12956 revealed 31 gene clusters for the biosynthesis of secondary metabolites, and allowed to predict the encoded products for 11 of these clusters. Cluster 18 (renamed cluster arp) corresponded to a type I polyketide gene cluster related to the previously described coelimycin P1 and streptazone gene clusters. The arp cluster consists of fourteen genes, including genes coding for putative regulatory proteins (a SARP-like transcriptional activator and a TetR-like transcriptional repressor), genes coding for structural proteins (three PKSs, one aminotransferase, two dehydrogenases, two cyclases, one imine reductase, a type II thioesterase, and a flavin reductase), and one gene coding for a hypothetical protein. Identification of encoded compounds by this cluster was achieved by combining several strategies: (i) inactivation of the type I PKS gene arpPIII; (ii) inactivation of the putative TetR-transcriptional repressor arpRII; (iii) cultivation of strains in different production media; and (iv) using engineered strains with higher intracellular concentration of malonyl-CoA. This has allowed identifying six new alkaloid compounds named argimycins P, which were purified and structurally characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. Some argimycins P showed a piperidine ring with a polyene side chain (argimycin PIX); others contain also a fused five-membered ring (argimycins PIV-PVI). Argimycins PI-PII showed a pyridine ring instead, and an additional N-acetylcysteinyl moiety. These compounds seem to play a negative role in growth and colony differentiation in S. argillaceus, and some of them show weak antibiotic activity. A pathway for the biosynthesis of argimycins P is proposed, based on the analysis of proposed enzyme functions and on the structure of compounds encoded by the arp cluster.

9.
Biomédica (Bogotá) ; 42(1): 136-146, ene.-mar. 2022. tab, graf
Artículo en Español | LILACS | ID: biblio-1374513

RESUMEN

Introducción. Toxoplasma gondii es un parásito con gran potencial zoonótico que puede infectar un amplio rango de huéspedes de sangre caliente, incluidos los animales del sector pecuario, lo que causa pérdidas a la industria. En el humano, es patógeno en personas inmunosuprimidas y afecta el desarrollo del feto en infecciones congénitas. Además, se asocia con diversos trastornos del comportamiento en personas sanas. El humano puede adquirir T. gondii al consumir carnes contaminadas mal cocidas. Objetivo. Determinar la positividad de T. gondii en carnes de consumo humano (res, pollo y cerdo) en Ibagué, Colombia. Materiales y métodos. Se utilizó la PCR convencional anidada y la secuencia del gen B1 de T. gondii como blanco de amplificación. Se tomaron 186 muestras de carne comercializada en la zona urbana de Ibagué (62 de res, 62 de pollo y 62 de cerdo) y se obtuvo el porcentaje de positividad en cada tipo de carne evaluada. Resultados. Se encontró un porcentaje de positividad de 18,8 % en las muestras, siendo la carne de cerdo la del mayor porcentaje (22,5 %; 14/62), seguida por las muestras de carne de res (19,3 %; 12/62) y de pollo (14,5 %; 9/62). Los mejores productos amplificados fueron secuenciados en Macrogen, y alineados con las secuencias del gen B1 depositadas en el GenBank, con lo que se confirmó su identidad. Conclusiones. Este es el primer estudio sobre prevalencia de T. gondii en carnes para consumo humano en Ibagué y el departamento del Tolima. Se demostró que los tres tipos de carne representan un riesgo para la infección en humanos a nivel local.


Introduction: Toxoplasma gondii is a parasite with great zoonotic potential. It can infect a broad range of warm-blooded hosts (including livestock) and causes significant losses in the industry. In humans, it has been described as a pathogen in immunosuppressed people, it affects the fetus development in congenital infections, and is associated with various behavioral disorders in healthy people. Humans can acquire T. gondii by consuming undercooked, contaminated meat. Objective: To determine T. gondii positivity (currently unknown) in meat for human consumption (i.e., beef, chicken, and pork) in the city of Ibague, Colombia. Materials and methods: We used conventional nested PCR and the T. gondii B1 gene sequence as amplification target. We collected samples of meat (N=186) sold in the urban area of Ibagué (62 beef, 62 chicken, and 62 pork samples) and determined the T. gondii positivity percentage for each type of meat. Results: The study found an average of 18.8% positivity for all meat samples, pork having the highest percentage (22.5%; 14/62), followed by beef (19.3%; 12/62) and chicken (14.5%; 9/62). The best-amplified products were sequenced by macrogen and aligned with the B1 gene sequences in GenBank, thereby confirming their identity. Conclusions: This is the first study of T. gondii prevalence in meat for human consumption carried out in the city of Ibagué and the department of Tolima. All three types of meat sampled represent a risk for local human infection.


Asunto(s)
Toxoplasma , Toxoplasmosis , Reacción en Cadena de la Polimerasa , Prevalencia , Carne
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA