Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 96(10): 2739-2754, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881160

RESUMEN

Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72-144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2'-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.


Asunto(s)
Fenobarbital , Proteómica , Animales , Receptor de Androstano Constitutivo , Hepatocitos , Humanos , Hígado , Ratones , Ratones Endogámicos , Fenobarbital/toxicidad
2.
Arch Toxicol ; 94(4): 1265-1278, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32123963

RESUMEN

The complex three-dimensional architecture of the liver with its metabolically zonated lobules is a prerequisite to perform functions of metabolic conversion of endogenous and foreign substrates. The enzymatic competencies of hepatocytes differ between zones and dynamically adapt upon xenobiotic activation of the nuclear constitutive androstane receptor (CAR). Using the antibody-based DigiWest proteomics approach, the abundance and phosphorylation status of hepatocyte proteins isolated by laser capture microdissection from the periportal and pericentral regions of murine liver lobules were analyzed. Patterns that distinguish region-specific hepatocytes were detected and the characteristic changes in phosphorylation and phosphatase activity were observed after CAR activation by TCPOBOP in mice. Time- and liver zone-dependent induction of CAR target proteins was monitored. Our observations substantially broaden our knowledge on zone-specific expression and regulation of signaling proteins and metabolic enzymes in different liver zones and their regulation by CAR activation. Inhibition of PP2A was observed in periportal hepatocytes and the amount and phosphorylation state of central hepatic co-regulators such as HNF4α and PGC-1α were altered. Thereby, this analysis of cellular signaling identifies inhibition of PP2A as the central regulatory element governing zonal metabolism. Our study demonstrates the usefulness of the DigiWest approach in unraveling zone-specific hepatic responses to the exposure against xenobiotics.


Asunto(s)
Hígado/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Western Blotting , Núcleo Celular , Receptor de Androstano Constitutivo , Hepatocitos/metabolismo , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Análisis por Matrices de Proteínas , Piridinas , Transducción de Señal , Xenobióticos
3.
Arch Toxicol ; 93(7): 1817-1833, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31139862

RESUMEN

Evidence exists that humans are exposed to plastic microparticles via diet. Data on intestinal particle uptake and health-related effects resulting from microplastic exposure are scarce. Aim of the study was to analyze the uptake and effects of microplastic particles in human in vitro systems and in rodents in vivo. The gastrointestinal uptake of microplastics was studied in vitro using the human intestinal epithelial cell line Caco-2 and thereof-derived co-cultures mimicking intestinal M-cells and goblet cells. Different sizes of spherical fluorescent polystyrene (PS) particles (1, 4 and 10 µm) were used to study particle uptake and transport. A 28-days in vivo feeding study was conducted to analyze transport at the intestinal epithelium and oxidative stress response as a potential consequence of microplastic exposure. Male reporter gene mice were treated three times per week by oral gavage with a mixture of 1 µm (4.55 × 107 particles), 4 µm (4.55 × 107 particles) and 10 µm (1.49 × 106 particles) microplastics at a volume of 10 mL/kg/bw. Effects of particles on macrophage polarization were investigated using the human cell line THP-1 to detect a possible impact on intestinal immune cells. Altogether, the results of the study demonstrate the cellular uptake of a minor fraction of particles. In vivo data show the absence of histologically detectable lesions and inflammatory responses. The particles did not interfere with the differentiation and activation of the human macrophage model. The present results suggest that oral exposure to PS microplastic particles under the chosen experimental conditions does not pose relevant acute health risks to mammals.


Asunto(s)
Macrófagos/efectos de los fármacos , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Poliestirenos/administración & dosificación , Administración Oral , Animales , Transporte Biológico , Células CACO-2 , Línea Celular , Técnicas de Cocultivo , Células Caliciformes/metabolismo , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Masculino , Ratones , Tamaño de la Partícula , Poliestirenos/farmacocinética , Poliestirenos/toxicidad
4.
Arch Toxicol ; 91(10): 3247-3260, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28393304

RESUMEN

The heat-induced food contaminant 3-monochloropropane-1,2-diol (3-MCPD) and its fatty acid esters exert nephrotoxicity in rodents. Previous studies including a non-targeted toxicoproteomics approach using samples from a 28-day oral toxicity study in rats with 10 mg/kg body weight (b.w.) of 3-MCPD, an equimolar dose of 53 mg/kg b.w. 3-MCPD dipalmitate and a lower dose of 13.3 mg/kg b.w. of 3-MCPD dipalmitate, revealed substance-induced alterations in metabolic pathways, especially for glycolysis and energy metabolism. In order to obtain deeper insight into mechanisms of 3-MCPD toxicity, samples from the above-mentioned study were reanalyzed using a lanthanum chloride precipitation-based toxicoproteomics approach in order to increase the yield of phosphorylated proteins, crucial players in cellular signaling. A comparison of standard 2D-gel-based proteomics and lanthanum chloride precipitation was performed, thus providing a comprehensive case study on these two methods using in vivo effects of an important food toxicant in a primary target organ. While resulting in similar 2D-gel electrophoresis pherograms and spot counts, data analysis demonstrated that lanthanum precipitation yielded more significantly deregulated proteins thus considerably improving our knowledge on 3-MCPD-dependent proteomic alterations in the kidney. 3-MCPD-induced deregulation of the phosphorylated, active version of extracellular signal-regulated kinase 2 (ERK2) in rat kidney was demonstrated using mass spectrometry and immunohistochemistry. In summary, this paper for the first time links 3-MCPD effects to deregulation of the ERK/mitogen-activated protein kinase signaling pathway in rat kidney and demonstrates that lanthanum chloride precipitation is suited to support the gain of mechanistic knowledge on organ toxicity using 2D-gel-based proteomics.


Asunto(s)
Riñón/efectos de los fármacos , Lantano/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteómica/métodos , alfa-Clorhidrina/toxicidad , Animales , Precipitación Química , Electroforesis en Gel Bidimensional/métodos , Riñón/metabolismo , Masculino , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Ratas Wistar , Pruebas de Toxicidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA