Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 42(6): 1068-1071, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295094

RESUMEN

Attosecond spectroscopy and precision frequency metrology depend on the stabilization of the carrier-envelope phase (CEP) of mode-locked lasers. Unfortunately, the phase of only a few types of lasers can be stabilized to jitters in the few-hundred millirad range. In a comparative experimental study, we analyze a femtosecond Ti:sapphire laser and three mode-locked fiber lasers. We numerically demodulate recorded time series of the free-running carrier-envelope beat note. Our analysis indicates a correlation between amplitude and frequency fluctuations at low Fourier frequencies for essentially all lasers investigated. While this correlation typically rolls off at frequencies beyond 100 kHz, we see clear indications for a broadband coupling mechanism in one of the fiber lasers. We suspect that the observed coupling mechanism acts to transfer intracavity power fluctuations into excess phase noise. This coupling mechanism is related to the mode-locking mechanism employed and not to the gain medium itself. We further verify this hypothesis by numerical simulations, which identify resonances of the saturable absorber mirror as a possible explanation for the coupling mechanism. Finally, we discuss how to avoid a detrimental influence of such resonances.

2.
Opt Lett ; 41(8): 1877-80, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27082368

RESUMEN

We characterize an Er:fiber laser frequency comb that is passively carrier envelope phase-stabilized via difference frequency generation at a wavelength of 1550 nm. A generic method to measure the comb linewidth at different wavelengths is demonstrated. By transferring the properties of a comb line to a cw external cavity diode laser, the phase noise is subsequently measured by tracking the delayed self-heterodyne beat note. This relatively simple characterization method is suitable for a broad range of optical frequencies. Here, it is used to characterize our difference frequency generation (DFG) comb over nearly an optical octave. With repetition-rate stabilization, a radiofrequency reference oscillator limited linewidth is achieved. A lock to an optical reference shows out-of-loop linewidths of the comb at the hertz level. The phase noise measurements are in excellent agreement with the elastic tape model with a fix point at zero frequency.

3.
Opt Lett ; 39(14): 4080-3, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121656

RESUMEN

We investigate the tuning behavior of a novel type of single-frequency optical synthesizers by phase comparison of the output signals of two identical devices. We achieve phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad. In contrast to previous implementations of single-frequency optical synthesizers, no comb line order switching is needed when tuned over more than one comb line spacing range of the employed frequency comb.

4.
Opt Lett ; 39(22): 6482-5, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25490499

RESUMEN

We demonstrate a completely fiber-coupled terahertz (THz) time-domain spectrometer (TDS) system based on electronically controlled optical sampling with two erbium-doped femtosecond fiber lasers at a central wavelength of 1560 nm. The system employs optimized InGaAs/InAlAs photoconductive antennas for THz generation and detection. With this system, we achieve measurement rates of up to 8 kHz and up to 180 ps scan range. We further achieve 2 THz spectral bandwidth and a dynamic range of 76 dB at only 500 ms measurement time.

5.
Opt Lett ; 37(10): 1652-4, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22627526

RESUMEN

We present a fiber-format picosecond light source for coherent anti-Stokes Raman scattering microscopy. Pulses from a Yb-doped fiber amplifier are frequency converted by four-wave mixing (FWM) in normal-dispersion photonic crystal fiber to produce a synchronized two-color picosecond pulse train. We show that seeding the FWM process overcomes the deleterious effects of group-velocity mismatch and allows efficient conversion into narrow frequency bands. The source generates more than 160 mW of nearly transform-limited pulses tunable from 775 to 815 nm. High-quality coherent Raman images of animal tissues and cells acquired with this source are presented.


Asunto(s)
Microscopía/instrumentación , Fibras Ópticas , Espectrometría Raman/instrumentación , Animales , Encéfalo/citología , Células Epidérmicas , Fibroblastos/citología , Ratones , Ratas , Glándulas Sebáceas/citología
6.
Opt Express ; 13(15): 5662-8, 2005 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-19498566

RESUMEN

We investigate the performance of an Er:fiber laser based femtosecond frequency comb for precision metrological applications. Instead of an active stabilization of the comb, the fluctuations of the carrier-envelope offset phase, the repetition phase, and the phase of the beat from a comb line with an optical reference are synchronously detected. We show that these fluctuations can be effectively eliminated by exploiting their known correlation. In our experimental scheme, we utilize two identically constructed frequency combs for the measurement of the fluctuations, rejecting the influence of a shared optical reference. From measuring a white frequency noise level, we demonstrate that a fractional frequency instability better than 1.4 x 10(-14) for 1 s averaging time can be achieved in frequency metrology applications using the Er:fiber based frequency comb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA