Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 18(5): e1010187, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500030

RESUMEN

Hox transcription factors play a conserved role in specifying positional identity during animal development, with posterior Hox genes typically repressing the expression of more anterior Hox genes. Here, we dissect the regulation of the posterior Hox genes nob-1 and php-3 in the nematode C. elegans. We show that nob-1 and php-3 are co-expressed in gastrulation-stage embryos in cells that previously expressed the anterior Hox gene ceh-13. This expression is controlled by several partially redundant transcriptional enhancers. These enhancers act in a ceh-13-dependant manner, providing a striking example of an anterior Hox gene positively regulating a posterior Hox gene. Several other regulators also act positively through nob-1/php-3 enhancers, including elt-1/GATA, ceh-20/ceh-40/Pbx, unc-62/Meis, pop-1/TCF, ceh-36/Otx, and unc-30/Pitx. We identified defects in both cell position and cell division patterns in ceh-13 and nob-1;php-3 mutants, suggesting that these factors regulate lineage identity in addition to positional identity. Together, our results highlight the complexity and flexibility of Hox gene regulation and function and the ability of developmental transcription factors to regulate different targets in different stages of development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Dev Biol ; 489: 34-46, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660370

RESUMEN

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/ß-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
3.
PLoS Genet ; 11(10): e1005585, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26488501

RESUMEN

The Wnt signaling pathway plays a conserved role during animal development in transcriptional regulation of distinct targets in different developmental contexts but it remains unclear whether quantitative differences in the nuclear localization of effector proteins TCF and ß-catenin contribute to context-specific regulation. We investigated this question in Caenorhabditis elegans embryos by quantifying nuclear localization of fluorescently tagged SYS-1/ß-catenin and POP-1/TCF and expression of Wnt ligands at cellular resolution by time-lapse microscopy and automated lineage tracing. We identified reproducible, quantitative differences that generate a subset of Wnt-signaled cells with a significantly higher nuclear concentration of the TCF/ß-catenin activating complex. Specifically, ß-catenin and TCF are preferentially enriched in nuclei of daughter cells whose parents also had high nuclear levels of that protein, a pattern that could influence developmental gene expression. Consistent with this, we found that expression of synthetic reporters of POP-1-dependent activation is biased towards cells that had high nuclear SYS-1 in consecutive divisions. We identified new genes whose embryonic expression patterns depend on pop-1. Most of these require POP-1 for either transcriptional activation or repression, and targets requiring POP-1 for activation are more likely to be expressed in the cells with high nuclear SYS-1 in consecutive divisions than those requiring POP-1 for repression. Taken together, these results indicate that SYS-1 and POP-1 levels are influenced by the parent cell's SYS-1/POP-1 levels and this may provide an additional mechanism by which POP-1 regulates distinct targets in different developmental contexts.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Factores de Transcripción/genética , beta Catenina/genética , Animales , Tipificación del Cuerpo/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/biosíntesis , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/biosíntesis , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
4.
PLoS Genet ; 11(3): e1005003, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738873

RESUMEN

While many transcriptional regulators of pluripotent and terminally differentiated states have been identified, regulation of intermediate progenitor states is less well understood. Previous high throughput cellular resolution expression studies identified dozens of transcription factors with lineage-specific expression patterns in C. elegans embryos that could regulate progenitor identity. In this study we identified a broad embryonic role for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons. ceh-36 is expressed in progenitors of over 30% of embryonic cells, yet is not required for embryonic viability. Quantitative phenotyping by computational analysis of time-lapse movies of ceh-36 mutant embryos identified cell cycle or cell migration defects in over 100 of these cells, but most defects were low-penetrance, suggesting redundancy. Expression of ceh-36 partially overlaps with that of the PITX transcription factor unc-30. unc-30 single mutants are viable but loss of both ceh-36 and unc-30 causes 100% lethality, and double mutants have significantly higher frequencies of cellular developmental defects in the cells where their expression normally overlaps. These factors are also required for robust expression of the downstream developmental regulator mls-2/HMX. This work provides the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors and demonstrates the power of quantitative developmental phenotyping in C. elegans to identify developmental regulators acting in progenitor cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriología , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/biosíntesis , Células Madre/metabolismo , Factores de Transcripción/biosíntesis
5.
Genesis ; 54(4): 182-97, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26915329

RESUMEN

Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Linaje de la Célula , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Fenotipo , Transducción de Señal , Factores de Transcripción/genética
6.
BMC Dev Biol ; 16(1): 16, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27184910

RESUMEN

BACKGROUND: The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke's pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known. RESULTS: We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnt1-cre and P0-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess the role of the neural crest in pituitary development we ablated it, using Wnt1-cre to delete Ctnnb1 (ß-catenin), which is required for neural crest development. The Wnt1-cre is active in the neural ectoderm, principally in the mesencephalon, but also in the posterior diencephalon. Loss of ß-catenin in this domain causes a rostral shift in the ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes. CONCLUSIONS: ß-catenin in the Wnt1 expression domain, including the neural crest, plays a critical role in regulation of pituitary gland growth, development, and vascularization.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/metabolismo , Cresta Neural/metabolismo , Organogénesis/genética , Hipófisis/metabolismo , beta Catenina/genética , Animales , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Inmunohistoquímica , Hibridación in Situ , Masculino , Mesencéfalo/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Cresta Neural/embriología , Hipófisis/embriología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/metabolismo
7.
Dev Dyn ; 243(11): 1391-400, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044936

RESUMEN

BACKGROUND: Correct specification of cell lineages and establishing angiogenic privilege within the developing cornea are essential for normal vision but the mechanisms controlling these processes are poorly understood. RESULTS: We show that the homeodomain transcription factor PItX2 is expressed in mesenchymal cells of the developing and mature cornea and use a temporal gene knockout approach to demonstrate that PITX2 is required for corneal morphogenesis and the specification of cell fates within the surface ectoderm and mesenchymal primordia. PITX2 is also required to establish angiogenic privilege in the developing cornea. Further, the expression of Dkk2 and suppression of canonical Wnt signaling activity levels are key mechanisms by which PITX2 specifies ocular surface ectoderm as cornea. In contrast, specifying the underlying mesenchyme to corneal fates and establishing angiogenic privilege in the cornea are less sensitive to DKK2 activity. Finally, the cellular expression patterns of FOXC2, PITX1, and BARX2 in Pitx2 and Dkk2 mutants suggest that these transcription factors may be involved in specifying cell fate and establishing angiogenic privilege within the corneal mesenchyme. However, they are unlikely to play a role in specifying cell fate within the corneal ectoderm. CONCLUSIONS: Together, these data provide important insights into the mechanisms regulating cornea development.


Asunto(s)
Diferenciación Celular/fisiología , Córnea/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Neovascularización Fisiológica/fisiología , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Córnea/irrigación sanguínea , Córnea/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tamoxifeno , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
8.
Dev Biol ; 374(1): 12-23, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23220655

RESUMEN

The invariant lineage of Caenorhabditis elegans has powerful potential for quantifying developmental variability in normal and stressed embryos. Previous studies of division timing by automated lineage tracing suggested that variability in cell cycle timing is low in younger embryos, but manual lineage tracing of specific lineages suggested that variability may increase for later divisions. We developed improved automated lineage tracing methods that allowroutine lineage tracing through the last round of embryonic cell divisions and we applied these methods to trace the lineage of 18 wild-type embryos. Cell cycle lengths, division axes and cell positions are remarkably consistent among these embryos at all stages, with only slight increase in variability later in development. The resulting quantitative 4-dimensional model of embryogenesis provides a powerful reference dataset to identify defects in mutants or in embryos that have experienced environmental perturbations. We also traced the lineages of embryos imaged at higher temperatures to quantify the decay in developmental robustness under temperature stress. Developmental variability increases modestly at 25°C compared with 22°C and dramatically at 26°C, and we identify homeotic transformations in a subset of embryos grown at 26°C. The deep lineage tracing methods provide a powerful tool for analysis of normal development, gene expression and mutants and we provide a graphical user interface to allow other researchers to explore the average behavior of arbitrary cells in a reference embryo.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Regulación del Desarrollo de la Expresión Génica , Animales , Caenorhabditis elegans/genética , Ciclo Celular , División Celular , Linaje de la Célula , Movimiento Celular/genética , Núcleo Celular/metabolismo , Desarrollo Embrionario/genética , Técnicas Genéticas , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Programas Informáticos , Estrés Fisiológico , Temperatura
9.
Dev Biol ; 349(2): 395-405, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21035439

RESUMEN

The transcription factors required to initiate myogenesis in branchial arch- and somite-derived muscles are known, but the comparable upstream factors required during extraocular muscle development have not been identified. We show Pax7 is dispensable for extraocular muscle formation, whereas Pitx2 is cell-autonomously required to prevent apoptosis of the extraocular muscle primordia. The survival requirement for Pitx2 is stage-dependent and ends following stable activation of genes for the muscle regulatory factors (e.g. Myf5, MyoD), which is reduced in the absence of Pitx2. Further, PITX2 binds and activates transcription of the Myf5 and MyoD promoters, indicating these genes are direct targets. Collectively, these data demonstrate that PITX2 is required at several steps in the development of extraocular muscles, acting first as an anti-apoptotic factor in pre-myogenic mesoderm, and subsequently to activate the myogenic program in these cells. Thus, Pitx2 is the first demonstrated upstream activator of myogenesis in the extraocular muscles.


Asunto(s)
Apoptosis/fisiología , Proteínas de Homeodominio/metabolismo , Desarrollo de Músculos/fisiología , Factores Reguladores Miogénicos/metabolismo , Músculos Oculomotores/embriología , Factores de Transcripción/metabolismo , Animales , Apoptosis/genética , Supervivencia Celular , Inmunoprecipitación de Cromatina , Hibridación in Situ , Mesodermo/metabolismo , Mesodermo/fisiología , Ratones , Factor de Transcripción PAX7/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína del Homeodomínio PITX2
10.
Dev Biol ; 357(1): 227-34, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21726547

RESUMEN

The cytoskeletal protein Shroom3 is a potent inducer of epithelial cell shape change and is required for lens and neural plate morphogenesis. Analysis of gut morphogenesis in Shroom3 deficient mouse embryos revealed that the direction of gut rotation is also disrupted. It was recently established that Pitx2-dependent, asymmetrical cellular behaviors in the dorsal mesentery (DM) of the early mid-gut, a structure connecting the gut-tube to the rest of the embryo, contribute to the direction of gut rotation in chicken embryos by influencing the direction of the dorsal mesenteric tilt. Asymmetric cell shapes in the DM epithelium are hypothesized to contribute to the tilt, however, it is unclear what lies downstream of Pitx2 to alter epithelial cell shape. The cells of the left DM epithelium in either Pitx2 or Shroom3 deficient embryos are shorter and wider than those in control embryos and resemble the shape of those on the right, demonstrating that like Pitx2, Shroom3 is required for cell shape asymmetry and the leftward DM tilt. Because N-cadherin expression is specific to the left side and is Pitx2 dependent, we determined whether Shroom3 and N-cadherin function together to regulate cell shape in the left DM epithelium. Analysis of mouse embryos lacking one allele of both Shroom3 and N-cadherin revealed that they possess shorter and wider left epithelial DM cells when compared with Shroom3 or N-cadherin heterozygous embryos. This indicates a genetic interaction. Together these data provide evidence that Shroom3 and N-cadherin function cooperatively downstream of Pitx2 to directly regulate cell shape changes necessary for early gut tube morphogenesis.


Asunto(s)
Cadherinas/metabolismo , Embrión no Mamífero/metabolismo , Tracto Gastrointestinal/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Microfilamentos/metabolismo , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Forma de la Célula , Femenino , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Ratones , Proteínas de Microfilamentos/genética , Morfogénesis/fisiología , Transducción de Señal , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
11.
Hum Mol Genet ; 19(9): 1791-804, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20150232

RESUMEN

Appropriate development of the retina and optic nerve requires that the forebrain-derived optic neuroepithelium undergoes a precisely coordinated sequence of patterning and morphogenetic events, processes which are highly influenced by signals from adjacent tissues. Our previous work has suggested that transcription factor activating protein-2 alpha (AP-2alpha; Tcfap2a) has a non-cell autonomous role in optic cup (OC) development; however, it remained unclear how OC abnormalities in AP-2alpha knockout (KO) mice arise at the morphological and molecular level. In this study, we show that patterning and morphogenetic defects in the AP-2alpha KO optic neuroepithelium begin at the optic vesicle stage. During subsequent OC formation, ectopic neural retina and optic stalk-like tissue replaced regions of retinal pigment epithelium. AP-2alpha KO eyes also displayed coloboma in the ventral retina, and a rare phenotype in which the optic stalk completely failed to extend, causing the OCs to be drawn inward to the midline. We detected evidence of increased sonic hedgehog signaling in the AP-2alpha KO forebrain neuroepithelium, which likely contributed to multiple aspects of the ocular phenotype, including expansion of PAX2-positive optic stalk-like tissue into the OC. Our data suggest that loss of AP-2alpha in multiple tissues in the craniofacial region leads to severe OC and optic stalk abnormalities by disturbing the tissue-tissue interactions required for ocular development. In view of recent data showing that mutations in human TFAP2A result in similar eye defects, the current findings demonstrate that AP-2alpha KO mice provide a valuable model for human ocular disease.


Asunto(s)
Modelos Animales de Enfermedad , Anomalías del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/genética , Nervio Óptico/embriología , Retina/embriología , Factor de Transcripción AP-2/genética , Animales , Cartilla de ADN/genética , Anomalías del Ojo/genética , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Morfogénesis/fisiología , Reacción en Cadena de la Polimerasa , Prosencéfalo/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Transcripción AP-2/metabolismo
12.
Dev Dyn ; 239(12): 3215-25, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20960542

RESUMEN

Pitx2 is a paired-like homeodomain gene that acts as a key regulator of eye development. Despite its significance, upstream regulation of Pitx2 expression during eye development remains incompletely understood. We use neural crest-specific ablation of Ctnnb1 to demonstrate that canonical Wnt signaling is not required for initial activation of Pitx2 in neural crest. However, canonical Wnt signaling is subsequently required to maintain Pitx2 expression in the neural crest. Eye development in Ctnnb1-null mice appears grossly normal early but significant phenotypes emerge following loss of Pitx2 expression. LEF-1 and ß-catenin bind Pitx2 promoter sequences in ocular neural crest, indicating a likely direct effect of canonical Wnt signaling on Pitx2 expression. Combining our data with previous reports, we propose a model wherein a sequential code of retinoic acid followed by canonical Wnt signaling are required for activation and maintenance of Pitx2 expression, respectively. Other key transcription factors in the neural crest, including Foxc1, do not require intact canonical Wnt signaling.


Asunto(s)
Ojo/embriología , Proteínas de Homeodominio/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Etiquetado Corte-Fin in Situ , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Transgénicos , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Proteínas Wnt/genética , beta Catenina/genética , Proteína del Homeodomínio PITX2
13.
Dev Dyn ; 238(9): 2149-62, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19623614

RESUMEN

Extracellular signaling "cross-talk" between tissues is an important requirement for development of many organs yet the underlying mechanisms generally remain poorly understood. The anterior segment of the eye, which is constructed from four embryonic lineages, provides a unique opportunity to genetically dissect developmental processes such as signaling "cross-talk" without fear of inducing lethality. In the current review, we summarize recent data showing that PITX2, a homeodomain transcription factor, integrates retinoic acid and canonical Wnt/beta-catenin signaling during anterior segment development. Because the requirements for retinoic acid signaling, canonical Wnt/beta-catenin signaling, and PITX2 are not unique to the eye, this newly identified pathway may have relevance elsewhere during development and in tissue homeostasis.


Asunto(s)
Ojo/embriología , Ojo/metabolismo , Factores de Transcripción/fisiología , Animales , Humanos , Modelos Biológicos , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Proteínas Wnt/metabolismo
14.
ACS Nano ; 13(12): 14426-14436, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799834

RESUMEN

As the cleaners of cells, lysosomes play an important role in circulating organic matter within cells, recovering damaged organelles, and removing waste via endocytosis. Because lysosome dysfunction is associated with various diseases-lysosomal storage diseases, inherited diseases, rheumatoid arthritis, and even shock-it is vital to monitor the movement of lysosomes in cells and in vivo. To that purpose, a method of optical imaging, super-resolution imaging technology (e.g., SIM and STORM), can overcome the limitations of traditional optical imaging and afford a range of possibilities for fluorescence imaging. However, the short wavelength excitation and easy photobleaching of super-resolution fluorescence probes somewhat problematize super-resolution imaging. As described herein, we designed a low-toxicity, photostable, near-infrared small molecule fluorescence probe HD-Br for use in the super-resolution imaging of lysosomes. The interaction of lysosomes and mitochondria was dynamically traced while using the probe's properties to label the lysosomes. Because the probe has the optimal near-infrared excitation and emission wavelengths, liver organoid 3D imaging and Caenorhabditis elegans imaging were also performed. Altogether, our findings indicate valuable approaches and techniques for super-resolution 3D and in vivo imaging.


Asunto(s)
Rayos Infrarrojos , Lisosomas/metabolismo , Nanopartículas/química , Organoides/metabolismo , Animales , Caenorhabditis elegans/fisiología , Endocitosis , Colorantes Fluorescentes/química , Células HeLa , Humanos , Hígado/diagnóstico por imagen , Mitofagia , Soluciones , Espectrometría de Fluorescencia , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA