Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38775852

RESUMEN

Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.

2.
Int J Biol Macromol ; 254(Pt 2): 127802, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918598

RESUMEN

Biomaterial scientists have recently focused their attention on evaluating various aspects of delivering genetic materials into cells to induce a cellular response. The process involves complexing negatively charged plasmids, followed by delivering the resulting package into cells, a process facilitated by lipids, peptides, viruses, synthetically modified cationic polymers, and specific inorganic nanomaterials. In the context of gene delivery for specific imaging in biological and biomedical applications, fluorescence nanocrystals or quantum dots (QDs) present promising candidates as engineered nanoparticles (NPs). This literature review study aims to investigate the potential of QDs as a novel tool for gene delivery to retinal cells. The proficiency of QDs in this context arises from their unique physicochemical characteristics, including optical electronic and catalytic properties, which render them viable options for biosensing imaging, drug delivery, and gene delivery applications. In the field of gene delivery to the retinal cells, factors such as photoluminescence, quantum yield, biocompatibility, size, and shape play crucial roles in the utilization of QDs. In this paper, we discuss the most appropriate credentials and briefly outline the findings, supported by relevant illustrative samples, to explore the delivery of genetic material utilizing QDs.


Asunto(s)
Nanopartículas , Nanoestructuras , Puntos Cuánticos , Puntos Cuánticos/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Técnicas de Transferencia de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA