Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 297(2): 100961, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34265301

RESUMEN

The 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) enzyme is the only member of the disulfide oxidoreductase (DSOR) family of enzymes, which are important for reductively cleaving S-S bonds, to have carboxylation activity. 2-KPCC catalyzes the conversion of 2-ketopropyl-coenzyme M to acetoacetate, which is used as a carbon source, in a controlled reaction to exclude protons. A conserved His-Glu motif present in DSORs is key in the protonation step; however, in 2-KPCC, the dyad is substituted by Phe-His. Here, we propose that this difference is important for coupling carboxylation with C-S bond cleavage. We substituted the Phe-His dyad in 2-KPCC to be more DSOR like, replacing the phenylalanine with histidine (F501H) and the histidine with glutamate (H506E), and solved crystal structures of F501H and the double variant F501H_H506E. We found that F501 protects the enolacetone intermediate from protons and that the F501H variant strongly promotes protonation. We also provided evidence for the involvement of the H506 residue in stabilizing the developing charge during the formation of acetoacetate, which acts as a product inhibitor in the WT but not the H506E variant enzymes. Finally, we determined that the F501H substitution promotes a DSOR-like charge transfer interaction with flavin adenine dinucleotide, eliminating the need for cysteine as an internal base. Taken together, these results indicate that the 2-KPCC dyad is responsible for selectively promoting carboxylation and inhibiting protonation in the formation of acetoacetate.


Asunto(s)
Dipéptidos , Cetona Oxidorreductasas , Mesna , Carboxiliasas/metabolismo , Dominio Catalítico , Oxidorreductasas/metabolismo , Especificidad por Sustrato , Xanthobacter/metabolismo
2.
Biochem J ; 477(11): 2027-2038, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32497192

RESUMEN

Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.


Asunto(s)
Acetona/metabolismo , Alquenos/metabolismo , Bacterias/metabolismo , 2-Propanol/metabolismo , Acetoacetatos/metabolismo , Acetilcoenzima A/metabolismo , Bicarbonatos/metabolismo , Catálisis , Ciclo del Ácido Cítrico/fisiología
3.
J Am Chem Soc ; 142(3): 1227-1235, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31816235

RESUMEN

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Catálisis , Clostridium/enzimología , Oxidación-Reducción , Difracción de Rayos X
4.
J Biol Chem ; 293(25): 9629-9635, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29720402

RESUMEN

Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum-iron protein (MoFe protein) that contains the iron-molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3 The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. These results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.


Asunto(s)
Azotobacter vinelandii/enzimología , Molibdoferredoxina/química , Nitrogenasa/química , Conformación Proteica , Protones , Catálisis , Cristalografía por Rayos X , Transporte de Electrón , Molibdoferredoxina/metabolismo , Nitrogenasa/metabolismo , Oxidación-Reducción
5.
Nat Chem Biol ; 13(6): 655-659, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28394885

RESUMEN

The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.


Asunto(s)
Electrones , Flavina-Adenina Dinucleótido/análogos & derivados , Flavinas/metabolismo , Modelos Biológicos , Sitios de Unión , Transporte de Electrón , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/química
6.
J Biol Chem ; 292(35): 14603-14616, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28705933

RESUMEN

Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.


Asunto(s)
Proteínas Arqueales/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/metabolismo , Regulación de la Expresión Génica Arqueal , Modelos Moleculares , NADP/metabolismo , Pyrococcus furiosus/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Biocatálisis , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/aislamiento & purificación , Ferredoxinas/química , Eliminación de Gen , Homeostasis , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , NAD/química , NAD/metabolismo , NADP/química , Organismos Modificados Genéticamente , Oxidación-Reducción , Filogenia , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
7.
J Am Chem Soc ; 139(28): 9544-9550, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28635269

RESUMEN

An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Protones , Termodinámica , Biocatálisis , Clostridium/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Potenciometría
8.
Proc Natl Acad Sci U S A ; 111(48): 17122-7, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25362050

RESUMEN

The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of ß2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.


Asunto(s)
Química Física/instrumentación , Cristalografía por Rayos X/métodos , Conformación Proteica , Proteínas/química , Cristalización , Electrones , Rayos Láser , Modelos Moleculares , Mioglobina/química , ARN Polimerasa II/química , Receptores Adrenérgicos beta 2/química , Reproducibilidad de los Resultados , Sincrotrones , Difracción de Rayos X/métodos , Rayos X
9.
Biochemistry ; 54(15): 2456-62, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25831270

RESUMEN

The reduction of substrates catalyzed by nitrogenase normally requires nucleotide-dependent Fe protein delivery of electrons to the MoFe protein, which contains the active site FeMo cofactor. Here, it is reported that independent substitution of three amino acids (ß-98(Tyr→His), α-64(Tyr→His), and ß-99(Phe→His)) located between the P cluster and FeMo cofactor within the MoFe protein endows it with the ability to reduce protons to H2, azide to ammonia, and hydrazine to ammonia without the need for Fe protein or ATP. Instead, electrons can be provided by the low-potential reductant polyaminocarboxylate-ligated Eu(II) (Em values of -1.1 to -0.84 V vs the normal hydrogen electrode). The crystal structure of the ß-98(Tyr→His) variant MoFe protein was determined, revealing only small changes near the amino acid substitution that affect the solvent structure and the immediate vicinity between the P cluster and the FeMo cofactor, with no global conformational changes observed. Computational normal-mode analysis of the nitrogenase complex reveals coupling in the motions of the Fe protein and the region of the MoFe protein with these three amino acids, which suggests a possible mechanism for how Fe protein might communicate subtle changes deep within the MoFe protein that profoundly affect intramolecular electron transfer and substrate reduction.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/química , Coenzimas/química , Simulación por Computador , Hierro/química , Molibdeno/química , Nitrogenasa/química , Adenosina Trifosfato/química , Sustitución de Aminoácidos , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Coenzimas/genética , Mutación Missense , Nitrogenasa/genética
10.
J Am Chem Soc ; 137(5): 1809-16, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25579778

RESUMEN

The [FeFe]-hydrogenase catalytic site H cluster is a complex iron sulfur cofactor that is sensitive to oxygen (O2). The O2 sensitivity is a significant barrier for production of hydrogen as an energy source in water-splitting, oxygenic systems. Oxygen reacts directly with the H cluster, which results in rapid enzyme inactivation and eventual degradation. To investigate the progression of O2-dependent [FeFe]-hydrogenase inactivation and the process of H cluster degradation, the highly O2-sensitive [FeFe]-hydrogenase HydA1 from the green algae Chlamydomonas reinhardtii was exposed to defined concentrations of O2 while monitoring the loss of activity and accompanying changes in H cluster spectroscopic properties. The results indicate that H cluster degradation proceeds through a series of reactions, the extent of which depend on the initial enzyme reduction/oxidation state. The degradation process begins with O2 interacting and reacting with the 2Fe subcluster, leading to degradation of the 2Fe subcluster and leaving an inactive [4Fe-4S] subcluster state. This final inactive degradation product could be reactivated in vitro by incubation with 2Fe subcluster maturation machinery, specifically HydF(EG), which was observed by recovery of enzyme activity.


Asunto(s)
Hidrógeno/química , Hidrogenasas/química , Hidrogenasas/metabolismo , Hierro/química , Oxígeno/farmacología , Monóxido de Carbono/farmacología , Chlamydomonas reinhardtii/enzimología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hidrógeno/metabolismo , Hidrogenasas/antagonistas & inhibidores , Hierro/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
11.
J Inorg Biochem ; 180: 129-134, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29275221

RESUMEN

The biological reduction of dinitrogen (N2) to ammonia is catalyzed by the complex metalloenzyme nitrogenase. Structures of the nitrogenase component proteins, Iron (Fe) protein and Molybdenum­iron (MoFe) protein, and the stabilized complexes these component proteins, have been determined, providing a foundation for a number of fundamental aspects of the complicated catalytic mechanism. The reduction of dinitrogen to ammonia is a complex process that involves the binding of N2 followed by reduction with multiple electrons and protons. Electron transfer into nitrogenase is typically constrained to the unique electron donor, the Fe protein. These constraints have prevented structural characterization of the active site with bound substrate. Recently it has been realized that selected amino acid substitutions in the environment of the active site metal cluster (Iron­molybdenum cofactor, FeMo-co) allow substrates to persist even in the resting state. Reported here is a 1.70Å crystal structure of a nitrogenase MoFe protein α-96Arg➔Gln variant with the alternative substrate acetylene trapped in a channel in close proximity to FeMo-co. Complementary theoretical calculations support the validity of the acetylene interaction at this site and is also consistent with more favorable interactions in the variant MoFe protein compared to the native MoFe protein. This work represents the first structural evidence of a substrate trapped in the nitrogenase MoFe protein and is consistent with earlier assignments of proposed substrate pathways and substrate binding sites deduced from biochemical, spectroscopic, and theoretical studies.


Asunto(s)
Acetileno/química , Hierro/química , Molibdeno/química , Nitrogenasa/química , Dominio Catalítico , Cristalografía por Rayos X , Estructura Molecular , Oxidación-Reducción , Especificidad por Sustrato
12.
Curr Opin Chem Biol ; 47: 32-38, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30077080

RESUMEN

Electron bifurcation, or the coupling of exergonic and endergonic oxidation-reduction reactions, was discovered by Peter Mitchell and provides an elegant mechanism to rationalize and understand the logic that underpins the Q cycle of the respiratory chain. Thought to be a unique reaction of respiratory complex III for nearly 40 years, about a decade ago Wolfgang Buckel and Rudolf Thauer discovered that flavin-based electron bifurcation is also an important component of anaerobic microbial metabolism. Their discovery spawned a surge of research activity, providing a basis to understand flavin-based bifurcation, forging fundamental parallels with Mitchell's Q cycle and leading to the proposal of metal-based bifurcating enzymes. New insights into the mechanism of electron bifurcation provide a foundation to establish the unifying principles and essential elements of this fascinating biochemical phenomenon.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Transporte de Electrón , Flavina-Adenina Dinucleótido/análogos & derivados , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Hidroquinonas/química , Hidroquinonas/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , NAD/química , NAD/metabolismo , Oxidación-Reducción
13.
Methods Enzymol ; 595: 213-259, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882202

RESUMEN

The crystallization of FeS cluster-containing proteins has been challenging due to their oxygen sensitivity, and yet these enzymes are involved in many critical catalytic reactions. The last few years have seen a wealth of innovative experiments designed to elucidate not just structural but mechanistic insights into FeS cluster enzymes. Here, we focus on the crystallization of hydrogenases, which catalyze the reversible reduction of protons to hydrogen, and nitrogenases, which reduce dinitrogen to ammonia. A specific focus is given to the different experimental parameters and strategies that are used to trap distinct enzyme states, specifically, oxidants, reductants, and gas treatments. Other themes presented here include the recent use of Cryo-EM, and how coupling various spectroscopies to crystallization is opening up new approaches for structural and mechanistic analysis.


Asunto(s)
Hidrogenasas/química , Nitrogenasa/química , Oxígeno/metabolismo , Amoníaco/metabolismo , Archaea/enzimología , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , Cristalización , Cristalografía , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Hierro/metabolismo , Conformación Molecular , Nitrógeno/metabolismo , Nitrogenasa/metabolismo , Conformación Proteica , Protones , Relación Estructura-Actividad
14.
Artículo en Inglés | MEDLINE | ID: mdl-26082925

RESUMEN

Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis, and is required by all three domains of life. Here, we report the purification and biochemical and structural characterization of enolase from Chloroflexus aurantiacus, a thermophilic anoxygenic phototroph affiliated with the green non-sulfur bacteria. The protein was purified as a homodimer with a subunit molecular weight of 46 kDa. The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg(-1) of protein, respectively. K m values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The K m values for Mg(2+) binding at these temperatures were 2.5 and 1.9 mM, respectively. When compared to enolase from mesophiles, the biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted. These data are consistent with the results of our phylogenetic analysis of enolase, which reveal that enolase has a thermophilic origin.

15.
Artículo en Inglés | MEDLINE | ID: mdl-26217660

RESUMEN

Mercuric ion reductase (MerA), a mercury detoxification enzyme, has been tuned by evolution to have high specificity for mercuric ions (Hg(2+)) and to catalyze their reduction to a more volatile, less toxic elemental form. Here, we present a biochemical and structural characterization of MerA from the thermophilic crenarchaeon Metallosphaera sedula. MerA from M. sedula is a thermostable enzyme, and remains active after extended incubation at 97°C. At 37°C, the NADPH oxidation-linked Hg(2+) reduction specific activity was found to be 1.9 µmol/min⋅mg, increasing to 3.1 µmol/min⋅mg at 70°C. M. sedula MerA crystals were obtained and the structure was solved to 1.6 Å, representing the first solved crystal structure of a thermophilic MerA. Comparison of both the crystal structure and amino acid sequence of MerA from M. sedula to mesophillic counterparts provides new insights into the structural determinants that underpin the thermal stability of the enzyme.

16.
Biotechnol Biofuels ; 7(1): 154, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25364380

RESUMEN

BACKGROUND: The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. RESULTS: Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. CONCLUSIONS: The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

17.
J Inorg Biochem ; 106(1): 151-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22119807

RESUMEN

The potential of hydrogen as a clean renewable fuel source and the finite reserves of platinum metal to be utilized in hydrogen production catalysts have provided the motivation for the development of non-noble metal-based solutions for catalytic hydrogen production. There are a number of microorganisms that possess highly efficient hydrogen production catalysts termed hydrogenases that generate hydrogen under certain metabolic conditions. Although hydrogenases occur in photosynthetic microorganisms, the oxygen sensitivity of these enzymes represents a significant barrier in directly coupling hydrogen production to oxygenic photosynthesis. To overcome this barrier, there has been considerable interest in identifying or engineering oxygen tolerant hydrogenases or generating mimetic systems that do not rely on oxygen producing photocatalysts. In this work, we demonstrate photo-induced hydrogen production from a stable [NiFe]-hydrogenase coupled to a [Ru(2,2'-bipyridine)(2)(5-amino-1,10-phenanthroline)](2+) photocatalyst. When the Ru(II) complex is covalently attached to the hydrogenase, photocatalytic hydrogen production occurs more efficiently in the presence of a redox mediator than if the Ru(II) complex is simply present in solution. Furthermore, sustained hydrogen production occurs even in the presence of oxygen by presumably creating a local anoxic environment through the reduction of oxygen similar to what is proposed for oxygen tolerant hydrogenases. These results provide a strong proof of concept for engineering photocatalytic hydrogen production in the presence of oxygen using biohybrid mimetic systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Thiocapsa roseopersicina/metabolismo , Aerobiosis , Catálisis/efectos de la radiación , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de la radiación , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Fotosíntesis/efectos de la radiación , Rutenio/química , Rutenio/metabolismo , Thiocapsa roseopersicina/enzimología , Thiocapsa roseopersicina/efectos de la radiación
18.
Environ Sci Technol ; 44(2): 834-40, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19928895

RESUMEN

A common microbial strategy for detoxifying metals involves redox transformation which often results in metal precipitation and/or immobilization. In the present study, the influence of ionic nickel [Ni(II)] on growth of the purple sulfur bacterium Thiocapsa roseopersicina was investigated. The results suggest that Ni(II) in the bulk medium at micromolar concentrations results in growth inhibition, specifically an increase in the lag phase of growth, a decrease in the specific growth rate, and a decrease in total protein concentration when compared to growth controls containing no added Ni(II). The inhibitory effects of Ni(II) on the growth of T. roseopersicina could be partially overcome by the addition of hydrogen (H(2)) gas. However, the inhibitory effects of Ni(II) on the growth of T. roseopersicina were not alleviated by H(2) in a strain containing deletions in all hydrogenase-encoding genes. Transmission electron micrographs of wild-type T. roseopersicina grown in the presence of Ni(II) and H(2) revealed a significantly greater number of dense nanoparticulates associated with the cells when compared to wild-type cells grown in the absence of H(2) and hydrogenase mutant strains grown in the presence of H(2). X-ray diffraction and vibrating sample magnetometry of the dense nanoparticles indicated the presence of zerovalent Ni, suggesting Ni(II) reduction. Purified T. roseopersicina hyn-encoded hydrogenase catalyzed the formation of zerovalent Ni particles in vitro, suggesting a role for this hydrogenase in Ni(II) reduction in vivo. Collectively, these results suggest a link among H(2) metabolism, Ni(II) tolerance, and Ni(II) reduction in T. roseopersicina .


Asunto(s)
Hidrógeno/farmacología , Níquel/toxicidad , Thiocapsa roseopersicina/efectos de los fármacos , Thiocapsa roseopersicina/crecimiento & desarrollo , Contaminantes Ambientales/toxicidad , Nanopartículas , Thiocapsa roseopersicina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA