Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Microbiol ; 25(3): 481-494, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35106679

RESUMEN

Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing rate of antibiotic-resistant strains demands studies to understand E. coli pathogenesis to drive the development of new therapeutic approaches. This study compared the gene expression profile of selected target genes in the prototype uropathogenic E. coli (UPEC) strain CFT073 grown in Luria Bertani (LB), artificial urine (AU), and during adhesion to host bladder cells by semi-quantitative real-time PCR (RT-PCR) assays. AU effectively supported the growth of strain CFT073 as well as other E. coli strains with different lifestyles, thereby confirming the appropriateness of this medium for in vitro models. Unexpectedly, gene expression of strain CFT073 in LB and AU was quite similar; conversely, during the adhesion assay, adhesins and porins were upregulated, while key global regulators were downregulated with respect to lab media. Interestingly, fimH and papGII genes were significantly expressed in all tested conditions. Taken together, these results provide for the first time insights of the metabolic and pathogenic profile of strain CFT073 during the essential phase of host cell adhesion.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Uropatógena , Adhesión Celular , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , Virulencia/genética
2.
Molecules ; 25(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941080

RESUMEN

Urinary tract infections (UTIs) are mainly caused by uropathogenic Escherichia coli (UPEC). Acute and recurrent UTIs are commonly treated with antibiotics, the efficacy of which is limited by the emergence of antibiotic resistant strains. The natural sugar d-mannose is considered as an alternative to antibiotics due to its ability to mask the bacterial adhesin FimH, thereby preventing its binding to urothelial cells. Despite its extensive use, the possibility that d-mannose exerts "antibiotic-like" activity by altering bacterial growth and metabolism or selecting FimH variants has not been investigated yet. To this aim, main bacterial features of the prototype UPEC strain CFT073 treated with d-mannose were analyzed by standard microbiological methods. FimH functionality was analyzed by yeast agglutination and human bladder cell adhesion assays. Our results indicate that high d-mannose concentrations have no effect on bacterial growth and do not interfere with the activity of different antibiotics. d-mannose ranked as the least preferred carbon source to support bacterial metabolism and growth, in comparison with d-glucose, d-fructose, and l-arabinose. Since small glucose amounts are physiologically detectable in urine, we can conclude that the presence of d-mannose is irrelevant for bacterial metabolism. Moreover, d-mannose removal after long-term exposure did not alter FimH's capacity to bind to mannosylated proteins. Overall, our data indicate that d-mannose is a good alternative in the prevention and treatment of UPEC-related UTIs.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Manosa/farmacología , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena/metabolismo , Línea Celular , Humanos , Saccharomyces cerevisiae/metabolismo
3.
BMC Microbiol ; 19(1): 252, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718545

RESUMEN

BACKGROUND: Quantification of intracellular bacteria is fundamental in many areas of cellular and clinical microbiology to study acute and chronic infections. Therefore, rapid, accurate and low-cost methods represent valuable tools in determining bacterial ability to persist and proliferate within eukaryotic cells. RESULTS: Herein, we present the first application of the immunofluorescence In-Cell Western (ICW) assay aimed at quantifying intracellular bacteria in in vitro infection models. The performance of this new approach was evaluated in cell culture infection models using three microorganisms with different lifestyles. Two facultative intracellular bacteria, the fast-growing Shigella flexneri and a persistent strain of Escherichia coli, as well as the obligate intracellular bacterium Chlamydia trachomatis were chosen as bacterial models. The ICW assay was performed in parallel with conventional quantification methods, i.e. colony forming units (CFUs) and inclusion forming units (IFUs). The fluorescence signal intensity values from the ICW assay were highly correlated to CFU/IFUs counting and showed coefficients of determination (R2), ranging from 0,92 to 0,99. CONCLUSIONS: The ICW assay offers several advantages including sensitivity, reproducibility, high speed, operator-independent data acquisition and overtime stability of fluorescence signals. All these features, together with the simplicity in performance, make this assay particularly suitable for high-throughput screening and diagnostic approaches.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Técnicas Bacteriológicas/métodos , Chlamydia trachomatis/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Shigella flexneri/crecimiento & desarrollo , Línea Celular , Chlamydia trachomatis/aislamiento & purificación , Recuento de Colonia Microbiana , Escherichia coli/aislamiento & purificación , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Biológicos , Reproducibilidad de los Resultados , Shigella flexneri/aislamiento & purificación
4.
Int J Mol Sci ; 20(14)2019 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31337077

RESUMEN

Carbapenem-resistant Acinetobacter baumannii strains cause life-threatening infections due to the lack of therapeutic options. Although the main mechanisms underlying antibiotic-resistance have been extensively studied, the general response to maintain bacterial viability under antibiotic exposure deserves to be fully investigated. Since the periplasmic space contains several proteins with crucial cellular functions, besides carbapenemases, we decided to study the periplasmic proteome of the multidrug-resistant (MDR) A. baumannii AB5075 strain, grown in the absence and presence of imipenem (IMP). Through the proteomic approach, 65 unique periplasmic proteins common in both growth conditions were identified: eight proteins involved in protein fate, response to oxidative stress, energy metabolism, antibiotic-resistance, were differentially expressed. Among them, ABUW_1746 and ABUW_2363 gene products presented the tetratricopeptide repeat motif, mediating protein-protein interactions. The expression switch of these proteins might determine specific protein interactions to better adapt to changing environmental conditions. ABUW_2868, encoding a heat shock protein likely involved in protection against oxidative stress, was upregulated in IMP-exposed bacteria. Accordingly, the addition of periplasmic proteins from A. baumannii cultured with IMP increased bacterial viability in an antioxidant activity assay. Overall, this study provides the first insights about the composition of the periplasmic proteins of a MDR A. baumannii strain, its biological response to IMP and suggests possible new targets to develop alternative antibiotic drugs.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacología , Imipenem/farmacología , Proteínas Periplasmáticas/metabolismo , Infecciones por Acinetobacter/microbiología , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo , Proteínas Periplasmáticas/genética , Fenotipo , Proteoma , Proteómica/métodos
5.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726759

RESUMEN

LF82, a prototype of adherent-invasive E. coli (AIEC), is able to adhere to, invade, survive and replicate into intestinal epithelial cells. LF82 is able to enhance either its adhesion and invasion by up-regulating carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM-6), the main cell surface molecule for bacterial adhesion, and its intracellular survival by inducing host DNA damage, thus blocking the cellular cycle. Lactoferrin (Lf) is a multifunctional cationic glycoprotein of natural immunity, exerting an anti-invasive activity against LF82 when added to Caco-2 cells at the moment of infection. Here, the infection of 12 h Lf pre-treated Caco-2 cells was carried out at a time of 0 or 3 or 10 h after Lf removal from culture medium. The effect of Lf pre-treatment on LF82 invasiveness, survival, cell DNA damage, CEACAM-6 expression, apoptosis induction, as well as on Lf subcellular localization, has been evaluated. Lf, even if removed from culture medium, reduced LF82 invasion and survival as well as bacteria-induced DNA damage in Caco-2 cells independently from induction of apoptosis, modulation of CEACAM-6 expression and Lf sub-cellular localization. At our knowledge, this is the first study showing that the sole Lf pre-treatment can activate protective intracellular pathways, reducing LF82 invasiveness, intracellular survival and cell-DNA damages.


Asunto(s)
Diferenciación Celular , Daño del ADN , Enterocitos , Escherichia coli Enteropatógena/crecimiento & desarrollo , Infecciones por Escherichia coli , Lactoferrina/farmacología , Animales , Células CACO-2 , Bovinos , Enterocitos/metabolismo , Enterocitos/microbiología , Enterocitos/patología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Humanos
6.
Microb Pathog ; 112: 274-278, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28987619

RESUMEN

Some Escherichia coli strains of phylogroup B2 harbor a (pks) pathogenicity island that encodes a polyketide-peptide genotoxin called colibactin. It causes DNA double-strand breaks and megalocytosis in eukaryotic cells and it may contribute to cancer development. Study of bacterial community that colonizes the adenomatous polyp lesion, defined as precancerous lesions, could be helpful to assess if such pathogenic bacteria possess a role in the polyp progression to cancer. In this cross-sectional study, a total of 1500 E. coli isolates were obtained from biopsies of patients presenting adenomatous colon polyps, the normal tissues adjacent to the polyp lesion and patients presenting normal mucosa. pks island frequency, phylogenetic grouping, fingerprint genotyping, and virulence gene features of pks positive (pks+) E. coli isolates were performed. We found pks+E. coli strongly colonize two patients presenting polypoid lesions and none were identified in patients presenting normal mucosa. Predominant phylogroups among pks+E. coli isolates were B2, followed by D. Clustering based on fragment profiles of composite analysis, typed the pks+ isolates into 5 major clusters (I-V) and 17 sub-clusters, demonstrating a high level of genetic diversity among them. The most prevalent virulence genes were fimH and fyuA (100%), followed by vat (92%), hra and papA (69%), ibeA (28%), and hlyA (25%). Our results revealed that pks+E. coli can colonize the precancerous lesions, with a high distribution in both the polyp lesions and in normal tissues adjacent to the lesion. The high differences in fingerprinting patterns obtained indicate that pks+E. coli strains were genetically diverse, possibly allowing them to more easily adapt to environmental variations.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/clasificación , Escherichia coli/genética , Variación Genética , Pólipos Intestinales/microbiología , Filogenia , Factores de Virulencia/genética , Adhesinas de Escherichia coli/genética , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Biopsia , Estudios Transversales , ADN Bacteriano/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas Fimbrias/genética , Islas Genómicas , Genotipo , Proteínas Hemolisinas/genética , Humanos , Italia , Proteínas de la Membrana/genética , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Epidemiología Molecular , Péptidos/genética , Policétidos , Receptores de Superficie Celular/genética , Virulencia
7.
Infect Immun ; 84(11): 3105-3113, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27600504

RESUMEN

Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract.


Asunto(s)
Adhesión Bacteriana/fisiología , Células Epiteliales/microbiología , Escherichia coli/patogenicidad , Próstata/citología , Biopelículas/crecimiento & desarrollo , Línea Celular , Enfermedad de Crohn/microbiología , Células Epiteliales/metabolismo , Escherichia coli/fisiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Humanos , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fenotipo , Filogenia , Virulencia , Factores de Virulencia/metabolismo
8.
Int J Med Microbiol ; 305(1): 75-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25434600

RESUMEN

Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Factores Inmunológicos/metabolismo , Shigella flexneri/inmunología , Shigella flexneri/fisiología , Células CACO-2 , Células HeLa , Humanos , Transducción de Señal
9.
Commun Biol ; 7(1): 948, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107399

RESUMEN

Acinetobacter baumannii is a critical opportunistic pathogen associated with nosocomial infections. The high rates of antibiotic-resistance acquisition make most antibiotics ineffective. Thus, new medical countermeasures are urgently needed. Outer membrane proteins (OMPs) are prime candidates for developing novel drug targets and antibacterial strategies. However, there are substantial gaps in our knowledge of A. baumannii OMPs. This study reports the impact of OmpA-like protein on bacterial physiology and virulence in A. baumannii strain AB5075. We found that PsaB (ABUW_0505) negatively correlates to stress tolerance, while ArfA (ABUW_2730) significantly affects bacterial stiffness, cell shape, and cell envelope thickness. Furthermore, we expand our knowledge on YiaD (ABUW_3045), demonstrating structural and virulence roles of this porin, in addition to meropenem resistance. This study provides solid foundations for understanding how uncharacterized OMPs contribute to A. baumannii's physiological and pathological processes, aiding the development of innovative therapeutic strategies against A. baumannii infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Porinas , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Virulencia , Antibacterianos/farmacología , Porinas/metabolismo , Porinas/genética , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Animales , Farmacorresistencia Bacteriana , Ratones , Pruebas de Sensibilidad Microbiana , Femenino
10.
Microbiol Spectr ; 11(6): e0077523, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37795996

RESUMEN

IMPORTANCE: In this paper, we demonstrated that apyrase is released within the host cell cytoplasm during infection to target the intracellular ATP pool. By degrading intracellular ATP, apyrase contributes to prevent caspases activation, thereby inhibiting the activation of pyroptosis in infected cells. Our results show, for the first time, that apyrase is involved in the modulation of host cell survival, thereby aiding this pathogen to dampen the inflammatory response. This work adds a further piece to the puzzle of Shigella pathogenesis. Due to its increased spread worldwide, prevention and controlling strategies are urgently needed. Overall, this study highlighted apyrase as a suitable target for an anti-virulence therapy to tackle this pathogen.


Asunto(s)
Proteínas Bacterianas , Factores de Virulencia , Shigella flexneri , Apirasa , Células Eucariotas , Adenosina Trifosfato
11.
Animals (Basel) ; 13(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37238068

RESUMEN

Escherichia coli is the bacterial pathogen most frequently associated with mare infertility. Here, we characterized 24 E. coli strains isolated from mares which presented signs of endometritis and infertility from a genotypic and phenotypic point of view. The majority of the isolates belonged to phylogenetic group B1 (9/24, 37.5%). Regarding antibiotic resistance profiles, 10 out of 24 (41.7%) were multidrug-resistant (MDR). Moreover, 17 out of 24 (70.8%) were strong or moderate biofilm producers, and of these eight were MDR strains. Interestingly, 21 out of 24 (87.5%) E. coli strains were phenotypically resistant to ampicillin and 10 of them were also resistant to amoxicillin with clavulanic acid. Regarding the presence of selected virulence factors, 50% of the examined strains carried at least three of them, with fimH detected in all strains, and followed by kpsMTII (11/24, 45.9%). No strain was able to invade HeLa cell monolayers. No relevant differences for all the investigated characteristics were shown by strains that grew directly on plates versus strains requiring the broth-enrichment step before growing on solid media. In conclusion, this work provides new insight into E. coli strains associated with mares' infertility. These results broaden the knowledge of E. coli and, consequently, add useful information to improve prevention strategies and therapeutic treatments contributing to a significant increase in the pregnancy rate in mares.

12.
Microorganisms ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889146

RESUMEN

Urinary tract infections (UTIs) are among the most common infections worldwide. Uropathogenic Escherichia coli (UPECs) are the main causative agent of UTIs. UPECs initially colonize the human host adhering to the bladder epithelium. Adhesion is followed by the bacterial invasion of urothelial epithelial cells where they can replicate to form compact aggregates of intracellular bacteria with biofilm-like properties. UPEC strains may persist within epithelial urothelial cells, thus acting as quiescent intracellular bacterial reservoirs (QIRs). It has been proposed that host cell invasion may facilitate both the establishment and persistence of UPECs within the human urinary tract. UPEC strains express a variety of virulence factors including fimbrial and afimbrial adhesins, invasins, iron-acquisition systems, and toxins, which cooperate to the establishment of long lasting infections. An increasing resistance rate relative to the antibiotics recommended by current guidelines for the treatment of UTIs and an increasing number of multidrug resistant UPEC isolates were observed. In order to ameliorate the cure rate and improve the outcomes of patients, appropriate therapy founded on new strategies, as alternative to antibiotics, needs to be explored. Here, we take a snapshot of the current knowledge of coordinated efforts to develop innovative anti-infective strategies to control the diffusion of UPECs.

13.
Antibiotics (Basel) ; 11(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35326791

RESUMEN

Multiple-antibiotic-resistant (MAR) extra-intestinal pathogenic Escherichia coli (ExPEC) represents one of the most frequent causes of human nosocomial and community-acquired infections, whose eradication is of major concern for clinicians. ExPECs may inhabit indefinitely as commensal the gut of humans and other animals; from the intestine, they may move to colonize other tissues, where they are responsible for a number of diseases, including recurrent and uncomplicated UTIs, sepsis and neonatal meningitis. In the pre-antibiotic era, heavy metals were largely used as chemotherapeutics and/or as antimicrobials in human and animal healthcare. As with antibiotics, the global incidence of heavy metal tolerance in commensal, as well as in ExPEC, has increased following the ban in several countries of antibiotics as promoters of animal growth. Furthermore, it is believed that extensive bacterial exposure to heavy metals present in soil and water might have favored the increase in heavy-metal-tolerant microorganisms. The isolation of ExPEC strains with combined resistance to both antibiotics and heavy metals has become quite common and, remarkably, it has been recently shown that heavy metal resistance genes may co-select antibiotic-resistance genes. Despite their clinical relevance, the mechanisms underlining the development and spread of heavy metal tolerance have not been fully elucidated. The aim of this review is to present data regarding the development and spread of resistance to first-line antibiotics, such as beta-lactams, as well as tolerance to heavy metals in ExPEC strains.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35270562

RESUMEN

In recent decades, Acinetobacter baumannii emerged as a major infective menace in healthcare settings due to scarce therapeutic options to treat infections. Therefore, undertaking genome comparison analyses of multi-resistant A. baumannii strains could aid the identification of key bacterial determinants to develop innovative anti-virulence approaches. Following genome sequencing, we performed a molecular characterization of key genes and genomic comparison of two A. baumannii strains, #36 and #150, with selected reference genomes. Despite a different antibiotic resistance gene content, the analyzed strains showed a very similar antibiogram profile. Interestingly, the lack of some important virulence determinants (i.e., bap, ata and omp33-36) did not abrogate their adhesive abilities to abiotic and biotic surfaces, as reported before; indeed, strains retained these capacities, although to a different extent, suggesting the presence of distinct vicarious genes. Conversely, secretion systems, lipopolysaccharide (LPS), capsule and iron acquisition systems were highly similar to A. baumannii reference strains. Overall, our analyses increased our knowledge on A. baumannii genomic content and organization as well as the genomic events occurring in nosocomial isolates to better fit into changing healthcare environments.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Variación Genética , Humanos , Pruebas de Sensibilidad Microbiana , Virulencia/genética
15.
Pharmaceutics ; 13(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494240

RESUMEN

Satureja montana essential oil (SEO) presents a wide range of biological activities due to its high content of active phytochemicals. In order to improve the essential oil's (EO) properties, oil in water nanoemulsions (NEs) composed of SEO and Tween-80 were prepared, characterized, and their antimicrobial and antibiofilm properties assayed against Escherichia coli strains isolated from healthy chicken. Since surfactant and oil composition can strongly influence NE features and their application field, a ternary phase diagram was constructed and evaluated to select a suitable surfactant/oil/water ratio. Minimal inhibitory concentration and minimal bactericidal concentration of NEs, evaluated by the microdilution method, showed that the SEO NE formulation exhibited higher inhibitory effects against planktonic E. coli than SEO alone. The quantification of biofilm production in the presence of NEs, assessed by crystal violet staining and scanning electron microscopy, evidenced that sub-MIC concentrations of SEO NEs enable an efficient reduction of biofilm production by the strong producer strains. The optimized nanoemulsion formulation could ensure food safety quality, and counteract the antibiotic resistance of poultry associated E. coli, if applied/aerosolized in poultry farms.

16.
mSystems ; 5(6)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33361319

RESUMEN

Multidrug-resistant Acinetobacter baumannii is regarded as a life-threatening pathogen mainly associated with nosocomial and community-acquired pneumonia. Here, we show that A. baumannii can bind the human carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors CEACAM1, CEACAM5, and CEACAM6. This specific interaction enhances A. baumannii internalization in membrane-bound vacuoles, promptly decorated with Rab5, Rab7, and lipidated microtubule-associated protein light chain 3 (LC3). Dissecting intracellular signaling pathways revealed that infected pneumocytes trigger interleukin-8 (IL-8) secretion via the extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) signaling pathways for A. baumannii clearance. However, in CEACAM1-L-expressing cells, IL-8 secretion lasts only 24 h, possibly due to an A. baumannii-dependent effect on the CEACAM1-L intracellular domain. Conversely, the glycosylphosphatidylinositol-anchored CEACAM5 and CEACAM6 activate the c-Jun NH2-terminal kinase (JNK)1/2-Rubicon-NOX2 pathway, suggestive of LC3-associated phagocytosis. Overall, our data show for the first time novel mechanisms of adhesion to and invasion of pneumocytes by A. baumannii via CEACAM-dependent signaling pathways that eventually lead to bacterial killing. These findings suggest that CEACAM upregulation could put patients at increased risk of lower respiratory tract infection by A. baumannii IMPORTANCE This work shows for the first time that Acinetobacter baumannii binds to carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM5, and CEACAM6. This binding significantly enhances A. baumannii internalization within alveolar host cell epithelia. Intracellular trafficking involves typical Rab5 and Rab7 vacuolar proteins as well as light chain 3 (LC3) and slowly progresses to bacterial killing by endosome acidification. CEACAM engagement by A. baumannii leads to distinct and specific downstream signaling pathways. The CEACAM1 pathway finely tunes interleukin-8 (IL-8) secretion, whereas CEACAM5 and CEACAM6 mediate LC3-associated phagocytosis. The present study provides new insights into A. baumannii-host interactions and could represent a promising therapeutic strategy to reduce pulmonary infections caused by this pathogen.

17.
Antibiotics (Basel) ; 9(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664222

RESUMEN

Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose's efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.

18.
Res Vet Sci ; 132: 150-155, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32585472

RESUMEN

Multiple antibiotic-resistant extra-intestinal pathogenic Escherichia coli (ExPEC) strains represent a serious health care problem both for poultry and humans. Recently isolates with combined resistance to both antibiotics and heavy metals have been increased worldwide, with growing concern for possible co-selection of antimicrobial resistant genes. In the present study we characterized, at a phenotypic and genetic level, 80 E. coli isolates: forty independent isolates were collected from manure samples of healthy chickens and 40 from independent human extra-intestinal infections (ExPEC strains). The results obtained indicated that i) compared to chicken, human isolates presented a broader spectrum of antibiotic resistance and virulence potentials; ii) although at a lower extent, ExPEC-associated virulence genes were also present in chicken isolates, suggesting they may be potentially pathogens; iii) that arsenic (As) and zinc (Zn) tolerance genetic determinants were significantly more prevalent among chicken and human isolates respectively, while those responsible for tolerance to cadmium (Cd), silver (Ag) and copper (Cu) were equally distributed among the two groups of strains; iv) a very strong correlation was found between chicken gentamicin (GM) resistance and cadmium (Cd) tolerance. Elucidating the role of heavy metals in the selection and spread of highly pathogenic E. coli strains (co-selection) is of primary importance to lower the potential risk of infections in poultry and humans. The control of bacterial zoonotic agents, that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations, could be of relevant interest.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana/genética , Escherichia coli Enteropatógena/fisiología , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Enfermedades de las Aves de Corral/microbiología , Animales , Antibacterianos/farmacología , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Marcadores Genéticos , Humanos , Metales Pesados/farmacología , Filogenia , Enfermedades de las Aves de Corral/genética , Virulencia
19.
Artículo en Inglés | MEDLINE | ID: mdl-32984078

RESUMEN

Allergic rhinitis (AR) and adenoid hypertrophy (AH) are, in children, the main cause of partial or complete upper airway obstruction and reduction in airflow. However, limited data exist about the impact of the increased resistance to airflow, on the nasal microbial composition of children with AR end AH. Allergic rhinitis (AR) as well as adenoid hypertrophy (AH), represent extremely common pathologies in this population. Their known inflammatory obstruction is amplified when both pathologies coexist. In our study, the microbiota of anterior nares of 75 pediatric subjects with AR, AH or both conditions, was explored by 16S rRNA-based metagenomic approach. Our data show for the first time, that in children, the inflammatory state is associated to similar changes in the microbiota composition of AR and AH subjects respect to the healthy condition. Together with such alterations, we observed a reduced variability in the between-subject biodiversity on the other hand, these same alterations resulted amplified by the nasal obstruction that could constitute a secondary risk factor for dysbiosis. Significant differences in the relative abundance of specific microbial groups were found between diseased phenotypes and the controls. Most of these taxa belonged to a stable and quantitatively dominating component of the nasal microbiota and showed marked potentials in discriminating the controls from diseased subjects. A pauperization of the nasal microbial network was observed in diseased status in respect to the number of involved taxa and connectivity. Finally, while stable co-occurrence relationships were observed within both control- and diseases-associated microbial groups, only negative correlations were present between them, suggesting that microbial subgroups potentially act as maintainer of the eubiosis state in the nasal ecosystem. In the nasal ecosystem, inflammation-associated shifts seem to impact the more intimate component of the microbiota rather than representing the mere loss of microbial diversity. The discriminatory potential showed by differentially abundant taxa provide a starting point for future research with the potential to improve patient outcomes. Overall, our results underline the association of AH and AR with the impairment of the microbial interplay leading to unbalanced ecosystems.


Asunto(s)
Tonsila Faríngea , Microbiota , Rinitis Alérgica , Niño , Disbiosis , Humanos , Hipertrofia , Inflamación , Metagenómica , ARN Ribosómico 16S/genética
20.
Microbes Infect ; 21(7): 305-312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30763764

RESUMEN

Specific Escherichia coli strains have been associated to colorectal cancer, while no data are available on genotypic and phenotypic features of E. coli colonizing premalignant adenomatous polyps and their pathogenic potential. This study was aimed at characterizing isolates collected from polyps and adjacent tissue in comparison with those from normal mucosa. From colonoscopy biopsies, 1500 E. coli isolates were retrieved and genotyped; 272 were characterized for phylogroup and major phenotypic traits (i.e., biofilm formation, motility, hemolysins, and proteases). Selected isolates were analyzed for extraintestinal pathogenic E. coli (ExPEC)-associated virulence genes and in vivo pathogenicity using Galleria mellonella. The majority of isolates collected from polyps were strong biofilm and poor protease producers, whereas those isolates from normal mucosa were highly motile, proteolytic and weak biofilm formers. Isolates from adjacent tissues shared features with those from both polyps and normal mucosa. Among selected E. coli isolates, ExPEC gene content/profile was variable and uncorrelated with the tissue of collection and larval mortality. Despite the heterogeneous virulence-gene carriage of the E. coli intestinal population, E. coli colonizing colonic adenomatous polyps express specific phenotypic traits that could represent an initial pathoadaptation to local environmental changes characterizing these lesions.


Asunto(s)
Pólipos Adenomatosos/microbiología , Neoplasias del Colon/microbiología , Escherichia coli/patogenicidad , Animales , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/fisiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/mortalidad , Genotipo , Proteínas Hemolisinas/metabolismo , Humanos , Locomoción , Mariposas Nocturnas , Fenotipo , Virulencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA