Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Chem Rec ; 24(2): e202300241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37728189

RESUMEN

The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37493129

RESUMEN

This study describes the fabrication of hybrid two-dimensional (2D)-quantum dot (QD) MoS2-AgInS2 photoconductive devices through the mechanical pressing of a MoS2 flake onto an AgInS2 QD film. The devices exhibit an enhanced photoresponse at both continuous and modulated optical excitations, compared with the bare MoS2 or AgInS2 layer, due to the formation of a built-in electric field near the MoS2/AgInS2 interface. The continuous wave photoresponse is significantly higher due to the effective photoconductive gain when electrons flow freely through the MoS2 flake, whereas holes are effectively trapped in AgInS2 QDs. The study highlights the potential of hybrid 2D-QD MoS2-AgInS2 devices for photovoltaic and optoelectronic applications.

3.
Inorg Chem ; 61(3): 1571-1589, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34982539

RESUMEN

δ-Bi2O3:M (M = S, Se, and Re) with an oxygen-defective fluorite-type structure is obtained by a coprecipitation method starting from the bismuth oxido cluster [Bi38O45(OMc)24(dmso)9]·2dmso·7H2O (A) in the presence of additives such as Na2SO4, Na2SeO4, NH4ReO4, Na2SeO3·5H2O, and Na2SO3. The coprecipitation of the starting materials with aqueous NaOH results in the formation of alkaline reaction mixtures, and the cubic bismuth(III)-based oxides Bi14O20(SO4) (1c), Bi14O20(SeO4) (2c), Bi14O20(ReO4.5) (3c), Bi12.25O16.625(SeO3)1.75 (4c), and Bi10.51O14.765(SO3)0.49(SO4)0.51 (5c) are obtained after microwave-assisted heating; formation of compound 5c is the result of partial oxidation of sulfur. The compounds 1c, 2c, 4c, and 5c absorb UV light only, whereas compound 3c absorbs in the visible-light region of the solar spectrum. Thermal treatment of the as-prepared metastable bismuth(III) oxide chalcogenates 1c and 2c at T = 600 °C provides a monotropic phase transition into their tetragonal polymorphs Bi14O20(SO4) (1t) and Bi14O20(SeO4) (2t), while compound 3c is transformed into the tetragonal modification of Bi14O20(ReO4.5) (3t) after calcination at T = 700 °C. Compounds of the systems Bi2O3-SOx (x = 2 and 3) and Bi2O3-Re2O7 are thermally stable up to T = 800 °C, whereas compounds of the system Bi2O3-SeO3 completely lose SeO3. Thermal treatment of 4c and 5c in air results in the oxidation of the tetravalent to hexavalent sulfur and selenium, respectively, upon heating to T = 400-500 °C. The as-prepared cubic bismuth(III)-based oxides 1c-5c were studied with regard to the photocatalytic decomposition of rhodamine B under visible-light irradiation with compound 3c showing the highest turnover and efficiency.

4.
Phys Chem Chem Phys ; 24(23): 14488-14497, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661180

RESUMEN

Applications in catalysis, adsorption and separation require high surface areas as provided by mesoporous materials. Particularly attractive is the class of silica-based mesoporous glasses, which are mechanically and chemically very stable and post-synthetically modifiable allowing specific surface properties to be introduced. One of the catalytically relevant moieties is the sulfonic acid group. To optimize the performance of mesoporous glass systems, analytical methods are required to determine the state of surface modification and its effect on the porosity. To this end, we here propose a specific combination of spectroscopic methods: The porosity during the introduction of thiol functionalities and subsequent oxidation into sulfonic acid groups on the surface of porous micro glass beads is investigated using hyperpolarized 129Xe NMR, revealing that during the two modification steps the textural properties are preserved. The grafting mode as well as the surface coverage are determined using 29Si MAS NMR. The oxidation step is demonstrated to be complete as probed by Raman spectroscopy and 13C MAS NMR. Our combined analysis demonstrates the successful and complete surface modification as well as the maintenance of the free accessibility of the mesopore system.

5.
Nanotechnology ; 33(4)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34644690

RESUMEN

We demonstrate the conversion to quasi two-dimensional (2D)ß-Ga2O3by thermally oxidizing layered GaSe of different thicknesses (from bilayer to 100 nm). GaSe flakes were prepared by mechanical exfoliation onto Si with a 300 nm SiO2layer, highly oriented pyrolytic graphite, and mica substrates. The flakes were then annealed in ambient atmosphere at different temperatures ranging from 600 °C to 1000 °C for 30 min. Raman spectroscopy confirmed the formation ofß-Ga2O3in the annealed samples by comparison with the Raman spectrum of aß-Ga2O3reference crystal. Atomic force microscopy was employed to study the morphology and the thickness of theß-Ga2O3flakes. In addition, we used energy dispersive x-ray spectroscopy together with scanning electron microscopy to investigate the evolution of the composition, especially Se residuals, and the sample topography with annealing temperature.ß-Ga2O3appears at temperatures above 600 °C and Se is completely evaporated at temperatures higher than 700 °C. The thicknesses of the resultingß-Ga2O3flakes are half of that of the initial GaSe flake. Here we therefore present a straightforward way to prepare 2Dß-Ga2O3by annealing 2D GaSe.

6.
Phys Chem Chem Phys ; 23(37): 20745-20764, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542127

RESUMEN

This Perspective provides a critical summary of the current state of the art in the synthesis and properties of polyheptazine single-layer carbon nitride (SLCN). The summary combines the authors' research and literature reports on SLCN concerning the synthesis of single-layer polyheptazine sheets, light absorption and emission by SLCN, photochemical and photocatalytic properties of SLCN as well as examples of applications of SLCN sheets as "building blocks" in heterostructures with nanocrystalline semiconductors and metals. The Perspective is concluded with an outlook discussing the most promising directions for further studies and applications of SLCN and related composites.

7.
Chemphyschem ; 20(12): 1640-1648, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30972929

RESUMEN

The temperature dependence of the photoluminescence (PL) intensity of colloidal semiconductor nanocrystals (NCs) makes them an appealing option in bio-sensing applications. Here, we probed the temperature-dependent PL behavior of aqueous glutathione (GSH)-capped Ag-In-S (AIS) NCs and their core/shell AIS/ZnS heterostructures. We show that both core and core-shell materials reveal strong PL quenching upon heating from 10 to 80 °C, which is completely reversible upon cooling. The PL quenching is assigned to the thermally activated dissociation of complexes formed by ligands with the metal cations on the NC surface and the introduction of water into the NC coordination sphere. This unique mechanism of the thermal PL quenching results in a much higher temperature sensitivity of the aqueous colloidal AIS (AIS/ZnS) NCs as compared with previously reported analogs capped by covalently bound ligands. Our results are expected to stimulate further studies on aqueous ternary NCs as colloidal luminescent nano-thermometers applicable for ratiometric temperature sensing.

8.
Faraday Discuss ; 214: 309-323, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30839033

RESUMEN

Since the first report in the early 2000s, there have been several experimental configurations that have demonstrated enhancement and spatial resolution of tip-enhanced Raman spectroscopy (TERS). The combination of a plasmonic substrate and a metallic tip is one suitable approach to achieve even higher enhancement and lateral resolution. In this contribution, we demonstrate TERS on a monolayer of MoS2 on an array of Au nanodisks. The Au nanodisks were prepared by electron beam writing. Thereafter, MoS2 was transferred onto the plasmonic substrate via the exfoliation technique. We witness an unprecedented enhancement and spatial resolution in the experiments. In the TERS image a ring-like shape is observed that matches the edges of the nanodisks. TERS enhancement at the edges is about 170 times stronger than at the center of the nanodisks. For a better understanding of the experimental results, finite element method (FEM) simulations were employed to simulate the TERS image of the MoS2/plasmonic heterostructure. Our calculations show a higher electric field concentration at the edges that exponentially decays to the center. Therefore, it reproduces the ring-like shape of the experimental image. Moreover, the calculations suggest a TERS enhancement of 135 at the edges compared to the center, which is in very good agreement with the experimental data. According to our calculations, the spatial resolution is also increased at the edges. For comparison, FEM simulations of a tip-flat metal substrate system (conventional gap-mode TERS) were carried out. The calculations confirmed a 110 times stronger enhancement at the edges of the nanodisks than that of conventional gap-mode TERS and explained the experimental maps. Our results provide not only a deeper understanding of the TERS mechanism of this heterostructure, but can also help in realizing highly efficient TERS experiments using similar systems.

9.
Analyst ; 144(10): 3297-3306, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-30968075

RESUMEN

Graphene oxide (GO) films are deposited on flexible Kapton substrates and selectively modified to conductive reduced graphene oxide (rGO) electrodes using laser patterning. Based on this, we design, fabricate, and test a flexible sensor integrating laser-reduced GO with silver plasmonic nanostructures. The fabricated device results in dual transduction channels: for electrochemical and plasmonic nanostructure-based surface-enhanced Raman spectroscopy (SERS) detection. The spectroscopic analysis verifying the formation of rGO and the modification by silver nanostructures is performed by Raman, energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The morphological investigation is followed by optical and scanning electron microscopy imaging. In addition to pristine silver nanostructures, the Raman spectroscopy results show the formation of species such as Ag2O, Ag2CO3, and Ag2SOx. A dual-channel sensor device based on electrochemical and plasmonic detection is fabricated as a demonstration of our Ag-rGO flexible concept architecture. The dual-channel device performance is successfully demonstrated in the electrochemical and SERS detection of 4-nitrobenzenethiol (4-NBT) using the same device. Our results show that without Ag nanostructures the sensitivity in the electrochemical and optical channels is not sufficient to detect 4-NBT. The performance and stability of the silver modified device are also verified. This work demonstrates an inexpensive, highly efficient, and greener way that is compatible with solution-processing technology for the production of flexible GO-based electrochemical and SERS detection devices integrated with plasmonic nanostructures.

10.
J Chem Phys ; 151(14): 144701, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615238

RESUMEN

A general synthesis approach of aqueous glutathione-capped ternary Ag-In-S, Cu-In-S, and Hg-In-S nanocrystals (NCs) is introduced, allowing the NC composition to be varied in a broad range. Ternary Hg-In-S (HIS) NCs are reported for the first time and found to have the same tetragonal chalcopyrite motif as Cu-In-S and Ag-In-S NCs, corroborated by phonon spectra, while X-ray photoelectron spectroscopic data indicate mercury to be present as Hg+ in the Hg-In-S NCs. Colloidal HIS and Hg-In-S/ZnS NCs showed little or no variations of the spectral width of the photoluminescence band upon NC size selection, temperature variation in a broad range of 10-350 K, deposition of a ZnS shell, or postsynthesis annealing. All these observations are similar to those reported earlier for Ag-In-S and Ag-In-S/ZnS NCs and allowed us to assume a general photoluminescence mechanism for all three ternary compounds, based on the model of radiative self-trapped exciton recombination.

11.
Sensors (Basel) ; 19(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621288

RESUMEN

We have investigated single-walled carbon nanotube (SWCNT) networks wrapped with the cationic surfactant sodium dodecyl-benzenesulfonate (SBDS) as promising candidates for water detection. This is the first time that the humidity behavior of endohedral Li-doped (Li@) and undoped SWCNTs/SDBS has been shown. We identified a strong and almost monotonic decrease in resistance as humidity increased from 11 to 97%. Sensitivities varied between -3 and 65% in the entire humidity range. Electrical characterization, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) analysis revealed that a combination of the electron donor behavior of the water molecules with Poole-Frenkel conduction accounted for the resistive humidity response in the Li@SWCNT/SDBS and undoped SWCNT/SDBS networks. We found that Li@SWCNTs boosted the semiconducting character in mixtures of metallic/semiconducting SWCNT beams. Moreover, electrical characterization of the sensor suggested that endohedral Li doping produced SWCNT beams with high concentration of semiconducting tubes. We also investigated how frequency influenced film humidity sensing behavior and how this behavior of SWCNT/SDBS films depended on temperature from 20 to 80 ° C. The present results will certainly aid design and optimization of SWCNT films with different dopants for humidity or gas sensing in general.

12.
Angew Chem Int Ed Engl ; 58(30): 10368-10374, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31150135

RESUMEN

Conjugated polymers featuring tunable band gaps/positions and tailored active centers, are attractive photoelectrode materials for water splitting. However, their exploration falls far behind their inorganic counterparts. Herein, we demonstrate a molecular engineering strategy for the tailoring aromatic units of conjugated acetylenic polymers from benzene- to thiophene-based. The polarized thiophene-based monomers of conjugated acetylenic polymers can largely extend the light absorption and promote charge separation/transport. The C≡C bonds are activated for catalyzing water reduction. Using on-surface Glaser polycondensation, as-fabricated poly(2,5-diethynylthieno[3,2-b]thiophene) on commercial Cu foam exhibits a record H2 -evolution photocurrent density of 370 µA cm-2 at 0.3 V vs. reversible hydrogen electrode among current cocatalyst-free organic photocathodes (1-100 µA cm-2 ). This approach to modulate the optical, charge transfer, and catalytic properties of conjugated polymers paves a critical way toward high-activity organic photoelectrodes.

13.
Inorg Chem ; 57(14): 8540-8549, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29949355

RESUMEN

The "controlled" synthesis of metastable γ-Bi2O3 by solution based approaches was reported several times recently, but the formation of Bi12SiO20 in the presence of trace amounts of silicates renders the results to be questionable. Here, the preparation of the Sillenite γ-Bi2O3 and the Sillenite-type Bi12SiO20 starting from the polynuclear bismuth oxido cluster [Bi38O45(O2CC3H5)24(DMSO)9] is reported. γ-Bi2O3 crystallizes after calcination at 800 °C of the silicate-free hydrolysis product "[Bi38O45(OH)24]" on a silver sheet. Corrosion of the substrate causes contamination with silver, which is not incorporated into the Bi-O lattice, and was removed by treatment with an aqueous KCN-solution. Bi12SiO20 was obtained after hydrothermal treatment of the bismuth oxido cluster in the presence of NaOH in glass vessels or Na2SiO3 in a Teflon-lined reactor vessel followed by calcination at 600 °C. PXRD studies, scanning electron microscopy, nitrogen adsorption measurements, IR- and Raman spectroscopy, diffuse UV-vis spectroscopy, and DSC were used for characterization. The phase transition of γ-Bi2O3 to give α-Bi2O3 occurred slowly in the temperature range of 348-510 °C ( Δ Hγ→α = 6.57 kJ·mol-1). The silver-containing γ-Bi2O3 exhibits slightly increased Raman modes compared to the silver-free sample due to the SERS effect. In the diffuse UV-vis spectrum γ-Bi2O3 exhibits an absorption edge at λ = 485 nm ( E g = 2.76 eV), and the contamination with silver results in an additional absorption edge at λ = 572 nm. Silver-free γ-Bi2O3 exhibits an absorption edge at λ = 460 nm ( E g = 2.83 eV) and Bi12SiO20 at λ = 422 nm ( E g = 3.16 eV). The photocatalytic activity of the compounds was investigated in the decomposition of aqueous rhodamine B under visible light irradiation, showing silver-containing γ-Bi2O3 to be slightly more effective compared to Bi12SiO20 and significantly more effective than the silver-free γ-Bi2O3.

14.
Nano Lett ; 17(10): 6027-6033, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28925710

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) has been rapidly improved over the past decade and opened up opportunities to study phonon properties of materials at the nanometer scale. In this Letter, we report on TERS of an ultrathin MoS2 flake on a nanostructured Au on silicon surface forming a two-dimensional (2D) crystal/plasmonic heterostructure. Au nanostructures (shaped in triangles) are prepared by nanosphere lithography, and then MoS2 is mechanically exfoliated on top of them. The TERS spectra acquired under resonance conditions at 638 nm excitation wavelength evidence strain changes spatially localized to regions as small as 25 nm in TERS imaging. We observe the highest Raman intensity enhancement for MoS2 on top of Au nanotriangles due to the strong electromagnetic confinement between the tip and a single triangle. Our results enable us to determine the local strain in MoS2 induced during heterostructure formation. The maximum frequency shift of E2g mode is determined to be (4.2 ± 0.8) cm-1, corresponding to 1.4% of biaxial strain induced in the MoS2 layer. We find that the regions of maximum local strain correspond to the regions of maximum topographic curvature as extracted from atomic force microscopy measurements. This tip-enhanced Raman spectroscopy study allows us to determine the built-in strain that arises when 2D materials interact with other nanostructures.

15.
Nanotechnology ; 28(19): 195303, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28296643

RESUMEN

Organic-inorganic hybrid electronic devices (HEDs) offer opportunities for functionalities that are not easily obtainable with either organic or inorganic materials individually. In the strive for down-scaling the channel length in planar geometry HEDs, the best results were achieved with electron beam lithography or nanoimprint lithography. Their application on the wafer level is, however, cost intensive and time consuming. Here, we propose trench isolated electrode (TIE) technology as a fast, cost effective, wafer-level approach for the fabrication of planar HEDs with electrode gaps in the range of 100 nm. We demonstrate that the formation of the organic channel can be realized by deposition from solution as well as by the thermal evaporation of organic molecules. To underline one key feature of planar HED-TIEs, namely full accessibility of the active area of the devices by external stimuli such as light, 6,13-bis (triisopropylsilylethynyl) (TIPS)-pentacene/Au HED-TIEs are successfully tested for possible application as hybrid photodetectors in the visible spectral range.

16.
Opt Express ; 22(15): 18454-63, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25089464

RESUMEN

Polar magneto-optical Kerr effect (MOKE) spectroscopy in the energy range from 1.75 eV to 5 eV at different magnetic field strength was applied to study Ni nanostructures formed on rubrene nanoislands. The magnetic hysteresis curves measured by MOKE change the shape depending on the photon energy and therefore deviate from those measured by superconducting quantum interference device (SQUID) magnetometry. Similar optical effects were previously observed in inorganic heterostructures. Our observations show that it correlates to the change in lineshape of the MOKE rotation and ellipticity spectra as a function of magnetic field strength. We show that this spectral dependence on magnetic field can be exploited to separate the contributions of two magnetic components to the magneto-optical spectra and hysteresis. The proposed model does not require the a priori knowledge of the (magneto-)optical constants of the heterostructure and its components.

17.
Langmuir ; 30(27): 8209-14, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24940611

RESUMEN

Raman spectroscopy is used to probe the structural changes in [SnSe]m[MoSe2]n ferecrystal thin films as a function of m, the number of bilayers of SnSe. In spite of the interleaved structure in the intergrowths, Raman spectra can be described as a superposition of spectra from the individual components, indicating that the interaction at the interface between the components is relatively weak. Analysis of room-temperature Raman spectra indicate that the MoSe2 layers separating the SnSe layers are nanocrystalline in all of the samples studied, with little change as the number of Se-Mo-Se trilayers (n) or SnSe bilayers (m) increases, reflecting the rotational disorder between adjacent trilayers. A thickness-dependent, continuous transition occurs in the SnSe layer as m is increased, from a pseudotetragonal structure when the layers are thin to a bulk-like orthorhombic SnSe structure when the SnSe layer thickness is increased. Polarization analysis of the Raman scattering from these materials allows the symmetry evolution of the SnSe layers through this transition to be determined.

18.
J Chem Phys ; 141(9): 094706, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25194385

RESUMEN

We have prepared phthalocyanine heterojunctions out of MnPc and F16CoPc, which were studied by means of X-ray absorption spectroscopy. This heterojunction is characterized by a charge transfer at the interface, resulting in charged MnPc(δ +) and F16CoPc(δ -) species. Our data reveal that the molecules are well ordered and oriented parallel to the substrate surface. Furthermore, we demonstrate the filling of the Co 3d(z(2)) orbital due to the charge transfer, which supports the explanation of the density functional theory, that the charge transfer is local and affects the metal centers only.

19.
ACS Appl Electron Mater ; 6(6): 4718-4734, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947952

RESUMEN

Flexible temperature sensors are becoming increasingly important these days. In this work, we explore graphene oxide (GO)/poly(vinyl alcohol) (PVA) nanocomposites for potential application in temperature sensors. The influence of the mixing ratio of both materials, the reduction temperature, and passivation on the sensing performance has been investigated. Various spectroscopic techniques revealed the composite structure and atomic composition. These were complemented by semiempirical quantum chemical calculations to investigate rGO and PVA interaction. Scanning electron and atomic force microscopy measurements were carried out to evaluate dispersion and coated film quality. The temperature sensitivity has been evaluated for several composite materials with different compositions in the range from 10 to 80 °C. The results show that a linear temperature behavior can be realized based on rGO/PVA composites with temperature coefficients of resistance (TCR) larger than 1.8% K-1 and a fast response time of 0.3 s with minimal hysteresis. Furthermore, humidity influence has been investigated in the range from 10% to 80%, and a minor effect is shown. Therefore, we can conclude that rGO/PVA composites have a high potential for excellent passivation-free, humidity-independent, sensitive, and fast response temperature sensors for various applications. The GO reduction is tunable, and PVA improves the rGO/PVA sensor performance by increasing the tunneling effect and band gap energy, consequently improving temperature sensitivity. Additionally, PVA exhibits minimal water absorption, reducing the humidity sensitivity. rGO/PVA maintains its temperature sensitivity during and after several mechanical deformations.

20.
Opt Express ; 21(4): 4908-16, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23482024

RESUMEN

We mechanically exfoliate mono- and few-layers of the transition metal dichalcogenides molybdenum disulfide, molybdenum diselenide, and tungsten diselenide. The exact number of layers is unambiguously determined by atomic force microscopy and high-resolution Raman spectroscopy. Strong photoluminescence emission is caused by the transition from an indirect band gap semiconductor of bulk material to a direct band gap semiconductor in atomically thin form.


Asunto(s)
Mediciones Luminiscentes/métodos , Espectrometría Raman/métodos , Elementos de Transición/química , Luz , Ensayo de Materiales , Dispersión de Radiación , Elementos de Transición/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA